[1] Maga EA, Shoemaker CF, Rowe JD, et al. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland[J] . J Dairy Sci, 2006, 89(2):518-524. [2] Wright G, Carver A, Cottom D, et al. High Level Expression of Active Human Alpha-1-Antitrypsin in the Milk of Transgenic Sheep[J] . Nature Biotechnology, 1991, 9(9):830-834. [3] Clark AJ, Bessos H, Bishop JO, et al. Expression of Human Anti-Hemophilic Factor IX in the Milk of Transgenic Sheep[J] . Nature Biotechnology, 1989, 7(5):487-492. [4] Luo Y, Wang Y, et al. Production of transgenic cattle highly expres-sing human serum albumin in milk by phiC31 integrase-mediated gene delivery[J] . Transgenic Res, 2015, 24(5):875-883. [5] Clark AJ, Bissinger P, Bullock DW, et al. Chromosomal position effects and the modulation of transgene expression[J] . Reprod Fertil Dev, 1994, 6(5):589-598. [6] Dorer DR. Do transgene arrays form heterochromatin in vertebrates?[J] . Transgenic Research, 1997, 6(1):3-10. [7] Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals[J] . Nature Genetics, 1998, 18(1):56-59. [8] Hennighausen L. The prospects for domesticating milk protein genes[J] . J Cell Biochem, 1992, 49(4):325-332. [9] Naruse K, Yoo SK, Sun MK, et al. Analysis of tissue-specific expression of Human Type II Collagen cDNA driven by different sizes of the upstream region of the β-Casein promoter[J] . Biosci Biotechnol Biochem, 2006, 70(1):93-98. [10] Cerdán MG, Young JI, Zino E, et al. Accurate spatial and temporal transgene expression driven by a 3. 8-kilobase promoter of the bovine beta-casein gene in the lactating mouse mammary gland[J] . Mol Reprod Dev, 1998, 49(3):236. [11] Charpentier E. Programmable Dual-RNA-Guided DNA endonucl-ease in adaptive bacterial immunity[J] . Ieice Technical Report Electron Devices, 1995, 95:55-60. [12] Hwang WY, Fu Y, Reyon D, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system[J] . PLoS One, 2013, 8(7):e68708. [13] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J] . Nature Biotechnology, 2013, 31(8):686. [14] Ho TT, Zhou N, Huang J, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines[J] . Nucleic Acids Research, 2015, 43(3):e17. [15] Stinnakre MG, Vilotte JL, Soulier S, et al. Creation and phenotypic analysis of α-Lactalbumin-Deficient mice[J] . Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(14):6544-6548. [16] Kumar S, Clarke AR, Hooper ML, et al. Milk composition and lactation of beta-casein-deficient mice[J] . Proc Natl Acad Sci USA, 1994, 91(13):6138-6142. [17] Brophy B, Smolenski G, Wheeler T, et al. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein[J] . Nature Biotechnology, 2003, 21(2):157-162. [18] Belhaj K, Chaparrogarcia A, Kamoun S, et al. Editing plant genomes with CRISPR/Cas9[J] . Current Opinion in Biotechnology, 2015, 32:76-84. [19] Baltes NJ, Voytas DF. Enabling plant synthetic biology through genome engineering[J] . Trends Biotechnol, 2015, 33(2):120-131. [20] Lu JX, Xue YH, Ke PZ, et al. CRISPR-Cas9:a new and promising player in gene therapy[J] . J Medi Genet, 2015, 52(5):289. [21] Feng W, Dai Y, et al. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from Chimaeric Pigs[J] . Int J Mol Sci, 2015, 16(3):6545-6556. [22] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system[J] . Mol Plant, 2013, 6(6):1975-1983. [23] Doench JG, Hartenian E, Graham DB, et al. Rational design of hi-ghly active sgRNAs for CRISPR-Cas9-mediated geneinactivation[J] . Nat Biotechnol, 2014, 32(12):1262-1267. [24] Ma X, Zhang Q, Zhu Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J] . Molecular Plant, 2015, 8(8):1274-1284. [25] Nekrasov V, Staskawicz B, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonucl-ease. Nat Biotechnol[J] . Nat Biotechnol, 2013, 31(8):691. [26] Li JF, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J] . Nature Biotechnology, 2013, 31(8):688-691. [27] Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy[J] . Science, 2015, 351(6271):403. [28] Latteyer S, Klein-Hitpass L, Khandanpour C, et al. A 6 bp in frame germline deletion in exon 7 of RET leads to increased RET phosphorylation, ERK activation and MEN2A[J] . Experimental & Clinical Endocrinology & Diabetes, 2015, 122(3):41-52. |