[1] Nieboer E, Richardson SH, Tomassini FD.Mineral uptake and release by Lichens:an overview[J]. Bryologist, 1978, 81(2):226-246. [2] Garty J.Biomonitoring atmospheric heavy metals with lichens[J]. Theory and Application, Critical Reviews in Plant Sciences, 2001, 20(4):309-317. [3] Yemets O, Gauslaa Y, Solhaug KA.Monitoring with lichens-Conductivity methods assess salt and heavy metal damage more efficiently than chlorophyll fluorescence[J]. Ecological Indicators, 2015, 55:59-64. [4] Goyal R, Seaward M.Metal uptake in terricolous lichen[J]. New Phytol, 1982, 90(1):85-98. [5] Monnet F, Bordas F, Deluchat V, et al.Toxicity of copper excess on the lichen Dermatocarponluridum:Antioxidant enzyme activities[J]. Chemosphere, 2006, 65(10):1806-1813. [6] Backor M, Pawlik-Skowrnska B, Tomko J, et al.Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella:uptake, viability, ergosterol and production of nonprotein thiols[J]. Mycol Res, 2006, 110(8):994-999. [7] Purvis OW, Pawlik-Skowronska B, Avery SV et al. Stress in yeasts and filamentous fungi[M]. Elsevier, Amsterdam, The Netherlands, 2008:175-200. [8] Dzubaja A, Backor M, Tomkob J, et al.Tolerance of the lichen Xanthoria parietina(L. )Th. Fr. to metal stress[J]. Ecotoxicology and Environmental Safety, 2008, 70(2):319-326. [9] Hauck M.Metal homeostasis in hypogym-niaphysodes is controlled by lichen substances[J]. Environmental Pollution, 2008, 153(2):304-308. [10] Hauck M, Jürgens SR, Willenbruch K, et al.Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens[J]. Annals of Botany, 2009, 103(1):13-22. [11] Vantová I, Klejdus M, Backor-ová M, et al. Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri[J]. Plant Growth Regulation, 2013, 69(1):1-9. [12] Backor M, Klejdus B, Vantová I, et al.Physiological in the lichens Peltigera rufescens and Cladina arbuslavar mitis, and the moss Racomitrium lanuginosum to copper-rich substrate[J]. Chemosphere, 2009, 76(10):1340-1343. [13] 热依拉·热合曼, 帕提古丽·依明, 阿布都拉·阿巴斯, 等. Cu2+胁迫对两种地衣细胞结构的影响[J]. 西北植物学报, 2015, 35(1):7-64. [14] Foyer CH, Lopez-Delgado H, Dat J F, et al.Hyd-rogen peroxide and glutathione-associated mech-anisms of acclamatory stress tolerance and signaling[J]. Plant Physiology, 1997, 100:241-254. [15] Metwally A, Safronova VI, Belimov AA, et al.Genotypic variation of the response to cadmium toxicity in Pisum sativum L.[J]. J Exp Bot, 2005, 56:167-178. [16] Freeman JL, Salt DE.The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase[J]. BMC Plant Biology, 2007, 7:63-71. [17] Sun Q, Ye ZH, Wang XR, et al.Cadmium hyper- accumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii[J]. Plant Physiology, 2007, 164:1489-1498. [18] 李娟, 全占军, 张春晖, 等. 植物铜耐性机理的研究进展[J]. 生态毒理学报, 2016, 11(3):53-60. [19] 谭九洲, 黄迎波. 植物重金属耐受分子机理的研究进展[J]. 安徽农业科学, 2014, 42(35):12782-12785. [20] 薛亮, 刘建锋, 史胜青, 等. 植物响应重金属胁迫的蛋白质组学研究进展[J]. 草业学报, 2003, 22(4):300-311. [21] Grill E, Winnacker EL, Zenk MH.Phytochelatins:the principal heavy -metal complexing peptides of higher plants[J]. Science, 1985, 230(4726):674-676. [22] 刘原志, 章强强. iTRAQ技术在真菌研究中的应用进展[J]. 中国真菌学杂志, 2015, 10(3):185-189. [23] Wu JT, Chieh CShih, Chou Tl.Intracellular proline accumulation in some algae exposed to copper and cadmium[J]. Botanical Bulletin of Academia, 1995, 36(2):89-93. [24] Wu JT, Hsieh MT, Kow LC.Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae)cells[J]. Plant Growth, 1998, 34(1):113-117. [25] Backor M, Loppi S.Interactions of lichens with heavy metals[J]. Biol Plantarum, 2009, 53(2):214-222. [26] 范宗东, 王淼, 卫功元, 等. 谷胱甘肽测定方法研究进展[J]. 生物技术, 2004, 14(1):3-15. [27] 谢苏婧, 谢树莲, 谢宝妹. 藻类植物中钙、镁、铁、锰、铜和锌含量分析[J]. 光谱学与光谱分析, 2003, 23(3):615-616. [28] Tomsett BA.Molecular biology of metal to tolerance of plants[J]. Plant Cell & Environment, 2010, 11(5):383-394. [29] 王狄, 李锋民, 熊治廷, 等. 铜的植物毒性与植物蓄积的关系[J]. 土壤与环境, 2000, 9(2):146-148. [30] Noctor G, Gomez L, Vanacker H, et al.Interacti-on between biosynthesis, compartmentation and transpot in the control of glutathione homeostasis and signaling[J]. Jornal of Experimental Botany, 2002, 53:1283-1304. [31] Ha SB, Smith AP, Howden R, et al.Phytochela-tinsyntheas genes from Arabidopsis and the yeast Schizosac charomyces pombe[J]. The Plant Cell, 1999, 11:1153-1164. [32] Kim DY, Bovet L, Kushnir S, et al.AtATM3 is involved in heavy metal resistance in Arabidopsis[J]. Plant Physiology, 2006, 140:922-932. [33] Parisy V, Poinssot B, Owsianowski L, et al.Identification of PAD2 as agamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis[J]. Plant J, 2007, 49:159-172. [34] Noctor G, Foyer GH.Ascorbate and glutathione:Keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular, 1998, 49:249-279. |