[1] 王有德, 何全发, 王兴东, 等. 天然沙冬青生长、更新状况调研及利用前景探讨[J]. 宁夏农林科技, 2004(3):28-31. [2] 傅立国. 中国植物红皮书:稀有濒危植物. 第一册[M]. 北京:科学出版社, 1991. [3] 苏志豪, 师玮, 卓立, 等. 沙冬青(Ammopiptanthus)的遗传结构与保育[J]. 2018(1):163-171. [4] 李慧卿, 马文元, 李慧勇. 沙冬青抗逆性及开发利用前景分析研究[J]. 世界林业研究, 2000, 13(5):67-71. [5] Huang G, Ma S, Bai L, et al.Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2):969-987. [6] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7):1090-1094. [7] 王兴华, 王光耀, Keong TK, 等. 蛋白质组学研究的原理、技术与应用[J]. 智慧健康, 2016, 2(4):7-12. [8] Xia F, Yao X, Tang W, et al.Isobaric tags for relative and absolute quantitation(iTRAQ)-based proteomic analysis of hugan qingzhi and its protective properties against free fatty acid-induced L02 hepatocyte injury[J]. Frontiers in Pharmacology, 2017, 8:99. [9] Wang X, Chen G, Liu H, et al.Four-dimensional orthogonal electrophoresis system for screening protein complexes and protein-protein interactions combined with mass spectrometry[J]. Journal of Proteome Research, 2010, 9(10):5325-5334. [10] Liu Q, Zheng J, Sun W, et al.A proximity-tagging system to identify membrane protein-protein interactions[J]. Nature Methods, 2018, 15(9):715-722. [11] Sriram R, Sahni AK, Dudhat VL, et al.Matrix-assisted Laser desorp-tion/ionization-time of flight mass spectrometry(MALDI-TOF MS)for rapid identification of Mycobacterium abscessus[J]. Medical Journal Armed Forces India, 2018, 74(1):22-27. [12] Wu M, Sun R, Wang M, et al.Analysis of perfluorinated compounds in human serum from the general population in Shanghai by Liquid chromatography-tandem mass spectrometry(LC-MS/MS)[J]. Chemosphere, 2017, 168:100-105. [13] Kosová K, Vítámvás P, Urban MO, et al.Plant abiotic stress proteomics:The major factors determining alterations in cellular proteome[J]. Frontiers in Plant Science, 2018, 9:122. [14] Kosová K, Vítámvás P, Prášil IT, et al.Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response[J]. Journal of Proteomics, 2011, 74(8):1301-1322. [15] Fei G, Ning W, Li H, et al.Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing[J]. Sci Rep, 2016, 6:34601. [16] Tao P, Ye C, Xia X, et al.De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa[J]. BMC Genomics, 2013, 14(1):488. [17] Wang W, Vinocur B, Altman A.Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14. [18] Cao P, Song J, et al.Characterization of multiple cold induced genes from Ammopiptanthus mongolicus and functional analyses of gene AmEBP1[J]. Plant Mol Biol, 2009, 69(5):529-539. [19] Lu C, Yin L, Li K.Proteome expression patterns in the stress tolerant evergreen Ammopiptanthus nanus under conditions of extreme cold[J]. Plant Growth Regulation, 2010, 62(1):65-70. [20] Chory J, Wu D.Weaving the complex web of signal transduction[J]. Plant Physiol, 2001, 125(1):77-80. [21] Kazuoka T, Oeda K. heat-stable COR(cold-regulated)proteins associated with frezzing tolerance in spinach[J]. Plant & Cell Physiology, 1992, 33(7):1107-1114. [22] Houde M, Danyluk J, Laliberté J-F, et al.Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat[J]. Plant Physiol, 1992, 99(4):1381-1387. [23] Fei Y, Sun L, Huang T, et al.Isolation and identification of antifreeze protein with high activity in Ammopiptanthus mongolicus[J]. Acta Botanica Sinica, 1994, 36(8):649-650. [24] 费云标, 魏令波, 等. 沙冬青抗冻蛋白的分离、纯化及其理化特性分析[J]. 科学通报, 2000, 45(20):2185-2189. [25] Wei L, Jiang Y, Shu N, et al.Biological characterization of heat-stable antifreeze proteins from Leaves of Ammopiptanthus mongolicus[J]. Acta Botanica Sinica, 1999, 41(8):837-841. [26] 祭美菊, 安黎哲, 陈拓, 等. 天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现[J]. 2001, 23(4):342-345. [27] 周晓蕾, 陈滔滔, 王保怀, 等. 沙冬青抗冻蛋白热滞活性的DSC研究[J]. 物理化学学报, 2001, 17(1):66-69. [28] 师静, 等. 沙冬青胚胎晚期发生丰富蛋白基因序列及表达特性分析[J]. 北京林业大学学报, 2012, 34(4):114-119. [29] 王红蕾, 王艳萍, 等. 沙冬青AmCSDP基因特性及转基因烟草的抗寒性分析[J]. 园艺学报, 2017, 44(4):712-722. [30] 宋祥春, 赵惠新, 等. 低温对两种沙冬青幼苗光合生理指标的影响[J]. 新疆大学学报:自然科学版, 2009, 26(3):342-346. [31] 郁万文, 曹福亮, 汪贵斌. 低温胁迫下银杏活性氧代谢与膜伤害的关系[J]. 东北林业大学学报, 2010, 38(7):46-48. [32] 刘家琼, 邱明新. 沙冬青植物群落研究[J]. 中国沙漠, 1995, 15(2):109-115. [33] Rovedahoyos G, Fonsecamoreno LP.Proteomics:a tool for the study of plant response to abiotic stress[J]. Agronomía Colombiana, 2011, 29(2):412-422. [34] 何芳兰, 韩生慧, 等. 土壤水分对沙冬青幼苗生长及其光合荧光参数的影响[J]. 中国农学通报, 2014, 30(16):62-66. [35] 付晨熙, 肖自华, 高飞, 等. 干旱胁迫下蒙古沙冬青叶片蛋白质组学研究[J]. 生物技术通报, 2017, 33(6):69-80. [36] 刘家琼, 周湘红. 几种固沙植物过氧化物酶、过氧化氢酶活性及其同工酶的初步分析[M]. 兰州:甘肃科技出版社, 1993. [37] 白娟, 龚春梅, 王刚, 等. 干旱胁迫下荒漠植物红砂叶片抗氧化特性[J]. 2010, 30(12):2444-2450. [38] Riazi A, Matsuda K, Arslan A.Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves[J]. J Exp Bot, 1985, 36(172):1716-1725. [39] 李慧卿, 马文元. 沙生植物抗旱性比较的主要指标及分析方法[J]. 干旱区研究, 1998(4):12-15. [40] 罗青红, 宁虎森, 何苗, 等. 5种沙地灌木对干旱胁迫的生理生态响应[J]. 林业科学, 2017, 53(11):29-42. [41] 夏晗, 黄金生. 低温、干旱和盐胁迫下沙冬青幼苗脯氨酸含量的变化[J]. 吉林林业科技, 2007, 36(4):1-2. [42] 岳光振, 金曼, 李俊林, 等. 沙冬青脯氨酸转运体基因的克隆及表达分析[J]. 生物技术通报, 2015, 31(5):106-112. [43] 颜华, 贾良辉, 王根轩. 植物水分胁迫诱导蛋白的研究进展[J]. 生命的化学, 2002, 22(2):165-168. [44] 林秀琴, 袁坤, 王真辉, 等. 植物响应逆境胁迫的比较蛋白质组学研究进展[J]. 热带农业科学, 2009, 29(2):52-57. [45] Guo L, Yu Y, Xia X, et al.Identification and functional characterisation of the promoter of the calcium sensor gene CBl1 from the xerophyte Ammopiptanthus mongolicus[J]. BMC Plant Biology, 2010, 10:18. [46] 丁志强, 尚桂军, 李娜, 等. 沙冬青CBl1蛋白纯化及性质研究[J]. 中国生物工程杂志, 2011, 31(2):23-29. [47] 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展[J]. 生物资源, 2017, 39(3):155-161. [48] Sun H, Xia B, Wang X, et al.Quantitative phosphoproteomic analysis provides insight into the response to short-term drought stress in Ammopiptanthus mongolicus roots[J]. International Journal Molecular Sciences, 2017, 18(10):2158. [49] 智冠华, 史军娜, 赵晓鑫, 等. 转沙冬青锌指蛋白基因AmZFPG烟草非生物胁迫抗性分析[J]. 园艺学报, 2013, 40(4):713-723. [50] Wang J, Xia X, Wang J, et al.Stress responsive zinc-finger protein gene of Populus euphratica in tobacco enhances salt tolerance[J]. J Integr Plant Biol, 2008, 50(1):56-61. [51] Wei Q, Guo Y, Cao H, et al.Cloning and characterization of an AtNHX2 -like Na + /H + antiporter gene from Ammopiptanthus mongolicus(Leguminosae)and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana[J]. Plant Cell Tissue & Organ Culture, 2011, 105(3):309-316. [52] 李婧男, 刘强, 贾志宽, 等. 盐胁迫对沙冬青幼苗生长与生理特性的影响[J]. 植物研究, 2009, 29(5):553-558. |