Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (2): 218-224.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0742
Previous Articles Next Articles
YU Shu-qiao, GUAN Zhao-ying, CHEN Hong
Received:
2018-08-25
Online:
2019-02-26
Published:
2019-03-07
YU Shu-qiao, GUAN Zhao-ying, CHEN Hong. Using Escherichia coli Light-regulated Gene Expression System to Degrade MBC[J]. Biotechnology Bulletin, 2019, 35(2): 218-224.
[1] McCarroll NE, Protzel A, Ioannou Y, et al. A survey of EPA/OPP and open literature on selected pesticide chemicals:II. Mutagenicity and carcinogenicity of carbendazim[J]. Mutation Research, 2002, 512:1-35. [2] Sandahl M, Mathiasson L, Jonsson, JA.Determination of thiophanate-methyl and its metabolites at thrace level in spiked natural water using the supported liquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high performance liquid chromatography[J]. Journal of Chromatography Application, 2000, 893:123-131. [3] Boudina A, Emmelin C, Baaliouamer A.Photochemical behaviour of carbendazim in aqueous solution[J]. Chemosphere, 2003, 50:649-655. [4] Kiigemagi U, Inman RD, Mellenthin WM, et al.Residues of benomyl(determined as carbendazim)and captan in postharvest-treated pears in cold storage[J]. Journal of Agricultural Food Chemistry, 1991, 39:400-403. [5] 华小梅, 单正军. 我国农药的生产、使用状况及其污染环境因子分析[J]. 环境科学进展, 1996, 4(2):33-44. [6] Lei J, Ren L, Hu, SB.The Characterization and bioremediation potential of degradation-enzyme from a newly isolated carbendazim-degrading Pseudomonas putida strain djl-1B[J]. International Journal of Simulation System, Science & Technology, 2015, 16(4B):178. [7] 张桂山, 贾小明, 马晓航, 等. 一株多菌灵降解细菌的分离、鉴定及系统发育分析[J]. 微生物学报, 2004, 44(4):417-421. [8] 田连生, 陈菲. T2-2菌株对多菌灵的降解特性及生物修复试验[J]. 微生物学报, 2009, 49(7):925-930. [9] Zhang XJ, Huang YJ, Harvey PR, et al.Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11[J]. PLoS One, 2013, 8(10):e74810. [10] Wang Z, Wang Y, Gong F, et al.Biodegradation of carbendazim by a novel actino bacterium Rhodococcus jialingiae djl-6-2[J]. Chemsphere, 2010, 81(5):639-644. [11] Wang YS, Huang YJ, Chen WC, et al.Effect of carbendazim and pencycuron on soil bacterial community[J]. Journal of Hazard Materials, 2009, 172:84-91. [12] Mazellier P, Leroy E, Laat JT, Legube B.Degradation of carbendazim by UV/H2O2 investigated by kinetic modelling[J]. Environmental Chemistry Letter, 2003, 1:68-72. [13] Lee JM, Lee J, Kim T, et al.Switchable gene expression in Escheri-chia coli using a miniaturized photobioreactor[J]. PLoS One, 2013, 8(1):e52382. [14] Cho HS, Seo SW, Kim YM, et al.Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli[J]. Biotechnology Bioengineering, 2012, 109:2612-2619. [15] Schein CH.Production of soluble recombinant proteins in bacteria[J]. Nat Biotech, 1989, 7:1141-1149. [16] Menart V, Jevsevar S, Vilar M, et al.Constitutive versus thermoin-ducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda[J]. Biotechnology Bioengineering, 2003, 83:181-190. [17] Rinas U.Synthesis rates of cellular proteins involved in translation and protein folding are strongly altered in response to overproduc-tion of basic fibroblast growth factor by recombinant Escherichia coli[J]. Biotechnology Progress, 1996, 12:196-200. [18] Lee SK, Keasling JD.Propionate-regulated high-yield protein production in Escherichia coli[J]. Biotechnology Bioengineering, 2006, 93:912-918. [19] Jana S, Deb JK.Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Applied Microbiological Biotechnology, 2005, 67:289-298. [20] Young DD, Deiters A.Photochemical activation of protein expression in bacterial cells[J]. Angewandte Chemistru International Edition, 2007, 46:4290-4292. [21] Drepper T, Krauss U, Berstenhorst SMZ, et al.Lights on and action! Controlling microbial gene expression by light[J]. Applied Microbiology Biotechnology, 2001, 90(1):23-40. [22] Kang DG, Lim GB, Cha, HJ.Functional periplasmic secretion of organophosphorous hydrolase using the twin-arginine translocation pathway in Escherichia coli[J]. Journal of Biotechnology, 2005, 118:379-385. [23] Yang C, Fredual F, Qiao C.Export of methyl parathion hydrolase to the periplasm by the Twin-arginine translocation pathway in Escherichia coli[J]. Journal of Agricultural Food Chemistry, 2009, 57:8901-8905. [24] Pandey G, Dorrian SJ, Russell RJ, et al.Cloning and biochemical characterization of a novel carbendazim(methyl-1H-benzimidazol-2-ylcarbamate)-hydrolyzing esterase from the newly isolated Nocardioides sp. strain SG-4G and its potential for use in enzymatic bioremediation[J]. Applied Environmental Microbiology, 2010, 76(9):2940-2945. [25] 马正才, 刘韧玫, 杨弋. 光激活基因表达系统在大肠杆菌中的应用[J/OL]. 中国科技论文在线, 2014. [26] Chen X, Liu R, Ma Z, et al.An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells[J]. Cell Research, 2016, 26(7):854-847. [27] Shimizu-Sato S, Huq E, Tepperman JM, et al.A light-switchable gene promoter system[J]. Nat Biotech, 2002, 20:1041-1044. [28] Levskaya A, Chevalier AA, Tabor JJ, et al.Synthetic biology:Engineering Escherichia coli to see light[J]. Nature, 2005, 438:441-442. [29] Liang B, Lu P, Li HH, et al.Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil[J]. Chemosphere, 2009, 77:1614-1619. [30] Mulbry WW, Karns JS.Purification and characterization of three parathion bacterial strains[J]. Applied Environmental Microbiology, 1989, 55(2):289-293. [31] Munnecke DM.Enzymatic detoxification of waste organophosphate pesticides[J]. Agricultural Food Chemistry, 1980, 28:105-111. [32] Munnecke DM, Hsieh PD.Microbial decontamination of parathion and p-nitrophenol in aqueous media[J]. Applied Microbiology, 1974, 28(2):212-217. [33] Fang H, Wang YQ, Gao CM, et al.Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim[J]. Biodegradation, 2010, 21(6):939-946. [34] Richins RD, Kaneva I, Mulchandani A, et al.Biodegradation of organophosphorus pesticides by surface-expressed organophosp-horus hydrolase[J]. Nat Biotech, 1997, 15:984-987. [35] 王德正, 吴辉, 李志敏, 叶勤. 重组大肠杆菌发酵生产谷胱甘肽的氨基酸添加策略优化[J]. 生物技术通报, 2015, 31(9):197-203. [36] Jongbloed JDH, Grieger U, Antelmann H, et al.Two minimal Tat translocasesin in Bacillus[J]. Molecular Microbiology. 2004, 54:1319-1325. |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[3] | PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains [J]. Biotechnology Bulletin, 2023, 39(6): 298-307. |
[4] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
[5] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[6] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[7] | YANG Dong, TANG Ying. Enzymatic Characterization and Degradation Sites of AFB1 Degradation by the Extracellular Enzyme of Bacillus subtilis Strain WTX1 [J]. Biotechnology Bulletin, 2023, 39(4): 93-102. |
[8] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[9] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
[10] | ZHANG Ao-jie, LI Qing-yun, SONG Wen-hong, YAN Shao-hui, TANG Ai-xing, LIU You-yan. Whole Genome Sequencing Analysis of a Phenol-degrading Strain Alcaligenes faecalis JF101 [J]. Biotechnology Bulletin, 2023, 39(10): 292-303. |
[11] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[12] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[13] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
[14] | ZHAO Yan-kun, LIU Hui-min, MENG Lu, WANG Cheng, WANG Jia-qi, ZHENG Nan. Research Progress in Heteroresistance of Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(9): 59-71. |
[15] | LI Liu, MU Ying-chun, LIU Lu, ZHANG Hong-yu, XU Jin-hua, YANG Zhen, QIAO Lu, SONG Jin-long. Research Progress on Contamination Control of Fluoroquinolone Antibiotics and Drug Resistance Genes [J]. Biotechnology Bulletin, 2022, 38(9): 84-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||