Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (4): 88-93.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0905
Previous Articles Next Articles
WANG Fang, SUN Li-jiao, ZHAO Xiao-yu, WANG Jie-wan, SONG Xing-shun
Received:
2018-10-18
Online:
2019-04-26
Published:
2019-05-05
WANG Fang, SUN Li-jiao, ZHAO Xiao-yu, WANG Jie-wan, SONG Xing-shun. Research Progresses on Plant NAC Transcription Factors[J]. Biotechnology Bulletin, 2019, 35(4): 88-93.
[1] Souer E, vanHouwelingen A, Kloos D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2):159-170. [2] Aida M, Ishida T, Fukaki H, et al.Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell, 1997, 9:841-857. [3] Riechmann JL, Heard J, Martin G, et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110. [4] Xiong Y, Liu T, Tian C, et al.Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1):191-203. [5] Rushton PJ, Bokowiec MT, et al.TOBFAC:the database of tobacco transcription factors[J]. BMC Bioinformatics, 2008, 9:53. [6] Pinheiro GL, Marques CS, Costa MD, et al.Complete inventory of soybean NAC transcription factors:sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444:10-23. [7] Olsen AN, Ernst HA, Leggio LL, et al.NAC transcription factors:Structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2):79-87. [8] Nuruzzaman M, Sharoni AM, Kikuchi S.Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4:248. [9] Li S, Wang N, Ji DD, et al.Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean[J]. Plant Physiol, 2016, 172(4):1804-1820. [10] Ernst HA, Olsen AN, Skriver K, et al.Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Reports, 2004, 5(3):297-303. [11] Chen Q, et al.A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein Cell, 2011, 2(1):55-63. [12] Welner DH, Lindemose S, Grossmann JG, et al.DNA binding by the plant-specific NAC transcription factors in crystal and solution:A firm link to WRKY and GCM transcription factors[J]. Biochemical Journal, 2012, 444(3):395. [13] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003, 10(6):239-247. [14] Huang DB, Wang SG, Zhang BC, et al.A gibberellin-mediated Della-NAC signaling cascade regulates cellulose synthesis in rice[J]. Plant Cell, 2015, 27(6):1681-1696. [15] Zhao YJ, Sun JY, Xu P, et al.Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species[J]. Plant Physiol, 2014, 164(2):765-776. [16] Pei HX, Ma N, Tian J, et al.An NAC transcription factor controls ethylene-regulated cell expansion in flower petals[J]. Plant Physiol, 2013, 163(2):775-791. [17] Ma XM, Zhang YJ, Turečková V, et al.The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato[J]. Plant Physiol, 2018, 177(3):1286-1302. [18] Nieuwenhuizen NJ, Chen XY, et al.Natural variation in monoter-pene synthesis in kiwifruit:transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcri-ption factors[J]. Plant Physiol, 2015, 167(4):1243-1258. [19] Mao CJ, Lu SC, Lv B, et al.A Rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174(3):1747-1763. [20] Wu AH, Allu AD, Garapati P, et al.JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis[J]. Plant Cell, 2012, 2:482-506. [21] Huysmans M, Buono RA, Skorzinski N, et al.NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap[J]. Plant Cell, 2018, 30(9):2197-2213. [22] Thirumalaikumar VP, Devkar V, Mehterov N, et al.NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato[J]. Plant Biotechnol J, 2018, 16(2):354-366. [23] Xu ZY, Kim SY, Hyeon DY, et al.The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses[J]. Plant Cell, 2013, 25(11):4708-4724. [24] Wu H, Fu B, Sun PP, et al.A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance[J]. Plant Physiol, 2016, 172(3):1532-1547. [25] Reusche M, Thole K, Janz D, et al.Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis[J]. Plant Cell, 2012, 24(9):3823-3837. [26] Duan M, et al.A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress[J]. Plant Cell, 2017, 7:1748-1772. [27] Liu C, et al.TsNAC1 is a key transcription factor in abiotic stress resistance and growth[J]. Plant Physiol, 2018, 1:742-756. [28] Ana JP, Yaoa JF, Xub RR, et al.An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiologia Plantarum, 2018, 164(3):279-289. [29] Shan W, et al.Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interac-ting with MaCBF1[J]. Plant Cell Environ, 2014, 9:2116-2127. [30] Hao YJ, Wei W, Song QX, et al.Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2):302-313. [31] Guo WW, Zhang JX, Zhang N, et al.The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e0135667. [32] Fang Y, Liao K, Du H, et al.A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. J Exp Bot, 2015, 66(21):6803-6817. [33] Huang Y, Li T, Xu ZS et al. Six NAC transcription factors involved in response to TYLCV infection in resistant and susceptible tomato cultivars[J]. Plant Physiol Biochem, 2017, 120:61-74. [34] Delessert C, Kazan K, Wilson IW, et al.The transcription factor ATAF2 represses the expression of pathogenesis related genes in Arabidopsis[J]. Plant J, 2005, 43(5):745-757. [35] Chen YJ, et al.The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew[J]. Plant Mol Biol, 2013, 83(6):577-590. [36] Du MM, et al.Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack[J]. Plant Cell, 2014, 7:3167-3184. [37] Gladman NP, Marshall RS, Lee KH, et al.The proteasome stress regulon is controlled by a pair of NAC transcription factors in Arabidopsis[J]. Plant Cell, 2016, 28(6):1279-1296. [38] De Clercq I, Vermeirssen V, Van Aken O, et al.The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. Plant Cell, 2013, 25(9):3472-3490. [39] Ng S, Ivanova A, Duncan O, et al.A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis[J]. Plant Cell, 2013, 9:3450-3471. [40] Zhu Y, Yan JV, Liu WJ, et al.Phosphorylation of a NAC transcription factor by a Calcium/Calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize[J]. Plant Physiol, 2016, 171(3):1651-1664. [41] Hofmann NR.A NAC transcription factor for flooding:SHYG helps plants keep their leaves in the air[J]. Plant Cell, 2013, 25(12):4771. [42] He X, Qu BY, Li WJ, et al.The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiol, 2015, 169(3):1991-2005. [43] Chen XD, Cheng JF, Chen LQ, et al.Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de novo root organogenesis in Arabidopsis[J]. Plant Physiol, 2016, 170(4):2136-2145. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[7] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[8] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[9] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[10] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[11] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[12] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[13] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[14] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[15] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||