[1] 官华忠, 祁建民, 周元昌, 等. 浅析中国高粱的起源[J]. 种子, 2005(4):76-79. [2] 陈冰嬬, 李继洪, 王阳, 等. 高粱(Sorghum bicolor(L.)Moench)种质资源研究进展[J]. 西北农林科技大学学报:自然科学版, 2013, 41(1):67-72, 77. [3] 苏金兰, 徐柏田, 林培. 中国白酒香型发展的进展研究[J]. 酿酒科技, 2017(8):102-111. [4] 彭秋. 贵州酿造高粱育种现状、问题及对策[J]. 种子, 2011, 30(2):68-71. [5] 熊先勤, 陈瑞祥, 杨菲, 等. 贵州酒用高粱种质资源考察及鉴定[J]. 山地农业生物学报, 2003, 22(2):117-121. [6] 熊先勤, 陈瑞祥, 杨菲, 等. 贵州酒用高粱种质资源搜集与鉴定[J]. 贵州农业科学, 1999, 27(6):9-12. [7] 裴晓红. 黔南山区高粱种质资源考察[J]. 贵州农业科学, 1995, S1:18-21. [8] 曾祥忠, 孙静, 涂佑能. 酒用高粱红缨子制种技术和质量控制措施[J]. 中国种业, 2015(6):66-67. [9] 袁蕊, 敖宗华, 刘小刚, 等. 南北方几种高粱酿酒品质分析[J]. 酿酒科技, 2011, 12:33-36. [10] 詹鹏杰, 张福耀, 王瑞, 等. 不同淀粉类别高粱品种酿酒相关性能分析[J]. 山西农业科学, 2013, 41(9):897-898. [11] 王志伟, 闫凤霞, 徐嘉良, 等. 3种高粱品种淀粉特性和酿造黄酒的风味品质分析[J]. 食品科学, 1-13. http://kns. cnki. net/kcms/detail/11.2206. TS. 20180919. 1419. 180. html. [12] 周福平, 柳青山, 张晓娟, 等. 不同高粱品系的淀粉糊化特征[J]. 植物学报, 2014, 49(3):306-312. [13] 闫松显, 袁河, 等. 酿酒高粱籽粒微观形态分析及其果皮厚度和单宁含量的相关性[J]. 中国酿造, 2018, 37(3):67-71. [14] 李祥栋, 石明, 魏心元. 禾谷类作物胚乳淀粉合成及Waxy基因研究进展[J]. 中国农学通报, 2015, 31(12):181-186. [15] Denyer K, Johnson P, et al.The control of amylose synthesis[J]. J Plant Physiol, 2001, 158(4):479-487. [16] Mace ES, Jordan DR.Location of major effect genes in sorghum(Sorghum bicolor(L.)Moench)[J]. Theoretical & Applied Genetics, 2010, 121(7):1339-1356. [17] Pedersen JF, Bean SR, Graybosch RA, et al.Characterization of waxy grain sorghum lines in relation to gran-ule-bound starch synthase[J]. Euphytica, 2005, 144(1/2):151-156. [18] McIntyre CL, Drenth J, Gonzalez N, et al. Molecular characterization of the waxy locus in sorghum[J]. Genome, 2008, 51(7):524-533. [19] Sattler SE, Singh J, Haas EJ, et al.Two distinct Waxy alleles impact the granule-bound starch synthase in sorghum[J]. Molecular Breeding, 2009, 24(4):349-359. [20] Lu Y, Zhao G, Li Y, et al.Identifi cation of two novel waxy alleles and development of their molecular markers in sorghum[J]. Genome, 2013, 56(5):283-288. [21] 李祥栋, 张明生, 王洋, 等. 贵州优质酒用高粱Waxy基因的鉴定分析[J]. 江苏农业科学, 2014, 42(5):39-42. [22] Murray SC, Sharma A, Rooney WL, et al.Genetic improvement of sorghum as a biofuel feedstock:I. QTL for stem sugar and grain nonstructural carbohydrates[J]. Crop Science, 2008, 48(6):2165-2179. [23] Figueiredo LFDA, Sine B, Chantereau J, et al.Variability of grain quality in sorghum:association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2[J]. Theoretical & Applied Genetics, 2010, 121(6):1171-1185. [24] Sukumaran S, Xiang W, Bean SR, et al.Association mapping for grain quality in a diverse sorghum collection[J]. The Plant Genome Journal, 2012, 5(3):126-129. [25] 卢庆善. 高粱学[M]. 北京:中国农业出版社, 1999:220-230. [26] 丁国祥, 曾庆曦, 等. 四川糯高粱品种的酿酒品质及其育种目标[J]. 绵阳经济技术高等专科学校学报, 1994, 2:14-16. [27] 闫松显, 吕云怀, 王莉, 等. 西南区酿酒高粱的种质形成和发展[J]. 中国酿造, 2017, 36(5):17-21. [28] 刘天朋, 丁国祥, 等. 施氮量和施氮时期对酿酒糯高粱产量和品质的影响[J]. 中国农学通报, 2017, 33(9):22-26. [29] 赵甘霖. 突破性酿酒糯高粱杂种——泸糯9号[J]. 中国农业信息, 2009, 3:40. [30] 刘涵, 敖宗华, 王明, 等. 酿酒高粱的研究进展[J]. 酿酒科技, 2016, 6:105-107. [31] 苏德峰, 焦少杰, 王黎明, 等. 高粱籽粒单宁积累规律[J]. 黑龙江农业科学, 2017, 11:4-6. [32] 白春明, 王春语, 王平, 等. 高粱子粒单宁含量和颜色QTL分析[J]. 植物遗传资源学报, 2017, 18(5):860-866. [33] Wu Y, Li X, Xiang W, et al.Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1[J]. Proceedings of the National Academy of Sciences of the USA, 2012, 109(26):10281-10286. [34] Hoffman L.Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection[J]. Neurochemical Research, 2016, 19(8):1083-1090. [35] Morris GP, Rhodes DH, Brenton Z, et al.Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits[J]. Genes Genomes Genetics, 2013, 3(11):2085-2094. [36] Morris GP, Ramu P, Deshpande SP, et al.Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J]. Proceedings of the National Academy of Sciences of the USA, 2013, 110(2):453-458. [37] Rhodes D, Gadgil P, Perumal R, et al.Natural variation and genome-wide association study of antioxidants in a diverse sorghum collection[J]. Cereal Chemistry, 2016, 94(2):190-198. [38] Rhodes DH, Hoffmann Jr L, Rooney WL, et al.Genome-wide association study of grain polyphenol concentrations in global sorghum[Sorghum bicolor(L.)Moench]germplasm[J]. Journal of Agricultural and Food Chemistry, 2014, 62(45):10916-10927. [39] 辽宁省农业科学院. 中国高粱栽培学[M]. 北京:农业出版社, 1988:403-404. [40] 焦少杰, 王黎明, 姜艳喜, 等. 高粱与固态白酒关系的研究综述[J]. 酿酒, 2015, 42(1):13-16. [41] Rami JF, Dufour P, Trouche G, et al.Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum(Sorghum bicolor L. Moench)[J]. Theoretical and Applied Genetics, 1998, 97(4):605-616. [42] Rhodes DH, Hoffmann L, Rooney WL, et al.Genetic architecture of kernel composition in global sorghum germplasm[J]. BMC Genomics, 2017, 18(1):15. [43] 庄名扬. 再论美拉德反应产物与中国白酒的香和味[J]. 酿酒科技, 2005, 5:34-38. [44] 徐占成. 酒体风味设计学[M]. 北京:新华出版社, 2003. [45] 刘大荣. 四川省高粱地方品种的酿造性能和优良品种分布[J]. 西南农业学报, 1988, 4:91-93. [46] 宋高友, 张纯慎, 苏益民, 等. 高粱籽粒品质对出酒率影响的初步探讨[J]. 辽宁农业科学, 1986, 5:6-8. [47] 张伟敏, 谭小蓉, 钟耕. 高粱蛋白质研究进展[J]. 粮食与油脂, 2005, 1:7-9. [48] Da Silva LS, Jung R, Zhao Z, et al.Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines[J]. Journal of Cereal Science, 2011, 54(1):160-167. [49] Kumar T, Dweikat I, Sato S, et al.Modulation of kernel storage proteins in grain sorghum(Sorghum bicolor(L.)Moench)[J]. Plant Biotechnology Journal, 2012, 10(5):533-544. [50] Grootboom AW, Mkhonza NL, et al.Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transg-enic sorghum[J]. Plant Cell Repo, 2014, 33(3):521-537. [51] Wu Y, Yuan L, Guo X, et al.Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum[J]. Nature Communications, 2013, 4(8):2217. [52] Mehlo L, Mbambo Z, Bado S, et al.Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 749(1):66-72. [53] 韦耀明, 李团银, 李三棉, 等. 高赖氨酸高粱265─1Y选育研究初报[J]. 山西农业科学, 1995(1):3-6. [54] Li A, Jia S, Yobi A, et al.Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum[J]. Plant Physiol, 2018:177(4):1425-1438. [55] 肖松, 周棱波, 张国兵, 等. 酱香型白酒用糯高粱种质遗传多样性分析[J]. 江苏农业科学, 2016, 44(4):45-49. [56] 柳金良, 郑琪, 孙志强, 等. 西北旱作区酿饲兼用高粱育种目标与策略[J]. 现代农业科技, 2017(14):25-28. [57] 周忠宇, 柳青山, 周福平, 等. 糯高粱育种要求性状特征及研究进展[J]. 山西农业科学, 2012, 40(5):547-549. [58] 闫鸿雁, 胡国宏, 栾天浩, 等. 关于北方酒用高粱育种目标的探讨与实施策略[J]. 农业网络信息, 2005(12):122-124. [59] 高士杰, 刘晓辉, 李伟. 21世纪初粒用高粱的育种目标与策略[J]. 杂粮作物, 2002(6):330-331. [60] 丁国祥, 曾庆曦, 等. 四川糯高粱品种的酿酒品质及其育种目标[J]. 绵阳经济技术高等专科学校学报, 1994(2):14-16. [61] Sabadin PK, Malosetti M, Boer MP, et al.Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences[J]. Theoretical & Applied Genetics, 2012, 124(8):1389-1402. [62] Upadhyaya HD, Wang YH, Gowda CLL, et al.Erratum to:Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection[J]. Theoretical and Applied Genetics, 2014, 127(6):1461. [63] 陈绍江, 宋同明. EMS花粉诱变获得高油玉米突变体[J]. 中国农业大学学报, 2002, 7(3):12. [64] 王培英, 许德春. 人工诱变改良大豆品质的研究[J]. 核农学报, 2000, 14(1):21-23. [65] Takagi H, Tamiru M, Abe A, et al.MutMap accelerates breeding of a salt-tolerant rice cultivar[J]. Nature Biotechnology, 2015, 33(5):445-449. |