[1] 黄小龙, 周双清, 陈吉良. 植物内生放线菌及其生理活性物质研究进展[J]. 生物学杂志, 2011, 28(3):77-79. [2] Chen J, Wu Q, Hawas UW, et al.Genetic regulation and manipulation for natural product discovery[J]. Appl Microbiol Biot, 2016, 100(7):2953-2965. [3] Katz L, Baltz RH.Natural product discovery:past, present, and future[J]. J Ind Microbio Biot, 2016, 43(2-3):155-176. [4] Zhang MM, Wong FT, Wang Y, et al.CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13(6):607-609. [5] Cho S, Shin J, Cho BK.Applications of CRISPR/Cas system to bacterial metabolic engineering[J]. Int J Mol Sci, 2018, 19(4):1089. [6] Peters J, Colavin A, Shi H, et al.A comprehensive, CRISPR-based functional analysis of essential genes in bacteria[J]. Cell, 2016, 165(6):1493-1506. [7] Mcallister KN, Bouillaut L, Kahn JN, et al.Using CRISPR-Cas9-mediated genome editing to generate C. difficilemutants defective in selenoproteins synthesis[J]. Sci Rep, 2017, 7(1):1-12. [8] Park J, Shin H, Lee SM, et al.RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain[J]. Microb Cell Fact, 2018, 17(1):4. [9] Hao N, Shearwin KE, Dodd IB.Programmable DNA looping using engineered bivalent dCas9 complexes[J]. Nat Commun, 2017, 8 (1):1628. [10] Song X, Huang H, Xiong Z, et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei[J]. Appl Environ Microb, 2017, 83(22):AEM. 01259-17. [11] Rock JM, Hopkins FF, Chavez A, et al.Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform[J]. Nat Microbiol, 2017, 2(4):16274. [12] Mougiakos I, Mohanraju P, Bosma EF, et al.Characterizing a thermostable Cas9 for bacterial genome editing and silencing[J]. Nat Commun, 2017, 8(1):1647. [13] Guan J, Wang W, Sun B.Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus[J]. Msphere, 2017, 2(6):e00403-e00417. [14] Zetsche B, Gootenberg JS, Abudayyeh OO, et al.Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. [15] Cobb RE, Wang Y, Zhao H.High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2014, 4(6):723-728. [16] Liu X, Dou G, Ma Y.Potential of endophytes from medicinal plants for biocontrol and plant growth promotion[J]. J Gen Plant Pathol, 2016, 82(3):165-173. [17] 王坚, 李永玲, 刘炜. 潮霉素B在遗传转化中应用的研究进展[J]. 宁夏农林科技, 2017, 58(12):36-43. [18] Shirling EB, Gottlieb D.Methods for characterization of Streptomyces species[J]. International Journal of Systematic Bacteriology, 1966, 16(3):313-340. [19] Wang Y, Cobb RE, Zhao H.High-efficiency genome editing of Streptomyces species by an engineered CRISPR/Cas system[J]. Methods Enzymol, 2016, 575:271-284. [20] 沈凤英, 吴伟刚, 张艳杰, 等. 玫瑰黄链霉菌Men-myco-93-63 nsdA_(mgh)基因阻断突变株的构建[J]. 生物工程学报, 2015, 31(12):1741-1752. [21] 刘甦苏, 吴曦, 周舒雅, 等. 基于Cre-LoxP系统的条件性定点敲入人源hRas基因小鼠的建立[J]. 实验动物科学, 2018, 35(4):21-28. [22] 高芝. Candida amazonensis FLP/FRT重组系统的构建及初步应用[D]. 无锡:江南大学, 2017. [23] 乔龙亮, 庞建虎, 党晨阳, 等. CRISPR/Cas9基因组编辑技术及其在链霉菌中的应用[J]. 生物技术通报, 2018, 34(5):32-40. [24] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat biotechnol, 2013, 31(9):827-832. [25] Mali P, Aach J, Stranges PB, et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nat biotechnol, 2013, 31(9):833-838. [26] Qin Z, John T.M, Rebecca D, et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plantants[J]. ChemSci, 2017, 8(4):3218-3227. |