Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 35-46.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0688
Previous Articles Next Articles
LIU Yi-yun(), DENG Li-min, YUE Hui-ying, YUE Chao, LIU Jian-hua()
Received:
2022-06-03
Online:
2022-09-26
Published:
2022-10-11
Contact:
LIU Jian-hua
E-mail:yiyunliu@scau.edu.cn;jhliu@scau.edu.cn
LIU Yi-yun, DENG Li-min, YUE Hui-ying, YUE Chao, LIU Jian-hua. Research Progress in Plasmid Conjugation and Its Inhibitors[J]. Biotechnology Bulletin, 2022, 38(9): 35-46.
类别 Categories | 组分 Components | 菌属 Species | 质粒 Plasmids | 耐药基因 Antimicrobial resistance genes | 质粒接合频率下降倍数d Fold reduction in plasmid transfer frequency | 参考文献 References |
---|---|---|---|---|---|---|
脂肪酸类及其衍生物 | 油酸/亚油酸/脱氢戊烯酸(DHCA) | 大肠杆菌→大肠杆菌 | R388(IncW)a, pKM101(IncN)c, RP4(IncP)c | DHCA(140 μmol/L): 350倍 | [ | |
2-炔基脂肪酸(2-HAD) | 大肠杆菌→大肠杆菌 | (IncF,IncW和IncH)a(IncI,IncL/M和IncX)b | (0.4 mmol/L)2-HDA : IncW,IncF和IncH(100倍) (1 mmol/L)2-HDA : IncI,IncL/M和IncX(6-25倍) | [ | ||
Tanzawaic acids A和B | 大肠杆菌→大肠杆菌 | (IncW和IncFII)a(IncFI,IncI,IncL/M,IncX,IncH)b(IncN,IncP)c | (0.4 mmol/L)TZA-B : 98倍 | [ | ||
2-溴软脂酸(2-BP) | 大肠杆菌→大肠杆菌 | R388(IncW) | (0.3 mmol/L)2-BP:98倍 | [ | ||
磷酸化多糖类抗生素 | (体外)黄霉素 | 粪肠球菌→粪肠球菌 | 8-16 mmol/L : 50-70倍 | [ | ||
大肠杆菌→粪肠球菌 | IncFIB,IncI1-Iγ,IncN | blaCTX-M-15,blaCTX-M-14, blaCTX-M-2 | 0.5 mmol/L FPL : 7.2-10.7倍 | [ | ||
(体内)黄霉素 | 大肠杆菌→沙门氏菌 | str,tet,amp | 饲料中添加64 ppm的黄霉素对接合转移具有抑制作用 | [ | ||
亚水杨基酰肼类及其衍生物 | BAR-072,BAR-073,UM-024 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | BAR-072 : 10倍 | [ | |
105055,239852 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | 105055和239852 : 2倍 | [ | ||
拟肽类化合物 | C10,KSK85 | 大肠杆菌→大肠杆菌 | pKM101(IncN)和R1-16(IncF) | (150 μm)C10 : 4倍 | [ | |
纳米材料 | nano-Al2O3,nano-TiO2,nano-SiO2和nano-Fe2O3 | 大肠杆菌→大肠杆菌、沙门氏菌 | RP4(IncP) | 5000 mmol/L : 100倍* | [ | |
CuO NPs / Cu2+ | 大肠杆菌→恶臭假单胞菌 | RP4(IncP) | (5 mmol/L)CuO NPs : 40倍* | [ | ||
Fe2O3@MoS2 | 大肠杆菌→大肠杆菌 | RP4-7(IncP) | Fe2O3(0.1 g)@MoS2 : 100倍 | [ | ||
CeO2 纳米材料 | 大肠杆菌→大肠杆菌 | RP4(IncP) | (1 000和5 000 μg/L)CeO2 NPs : 4倍 | [ | ||
等离子体 | 等离子体 | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1,aac(3)-II | 9 kv(10 min): 1 000倍 | [ | |
NO3-,Cu2+,Fe2+ | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1, aac(3)-II,intI1 | Fe2+: 98倍 | [ | ||
其他 | 双膦酸盐(PNP) | 大肠杆菌→大肠杆菌 | IncF | 10 mmol/L(PNP): 90倍 | [ | |
单链Fv抗体 | 大肠杆菌→大肠杆菌 | R388(IncW) | scFv-P4.E7: 20倍 | [ | ||
自由亚硝酸 | 大肠杆菌→大肠杆菌 | RP4(IncP) | 20 μg/L:100倍 | [ |
Table 1 Categorization of conjugation inhibitors
类别 Categories | 组分 Components | 菌属 Species | 质粒 Plasmids | 耐药基因 Antimicrobial resistance genes | 质粒接合频率下降倍数d Fold reduction in plasmid transfer frequency | 参考文献 References |
---|---|---|---|---|---|---|
脂肪酸类及其衍生物 | 油酸/亚油酸/脱氢戊烯酸(DHCA) | 大肠杆菌→大肠杆菌 | R388(IncW)a, pKM101(IncN)c, RP4(IncP)c | DHCA(140 μmol/L): 350倍 | [ | |
2-炔基脂肪酸(2-HAD) | 大肠杆菌→大肠杆菌 | (IncF,IncW和IncH)a(IncI,IncL/M和IncX)b | (0.4 mmol/L)2-HDA : IncW,IncF和IncH(100倍) (1 mmol/L)2-HDA : IncI,IncL/M和IncX(6-25倍) | [ | ||
Tanzawaic acids A和B | 大肠杆菌→大肠杆菌 | (IncW和IncFII)a(IncFI,IncI,IncL/M,IncX,IncH)b(IncN,IncP)c | (0.4 mmol/L)TZA-B : 98倍 | [ | ||
2-溴软脂酸(2-BP) | 大肠杆菌→大肠杆菌 | R388(IncW) | (0.3 mmol/L)2-BP:98倍 | [ | ||
磷酸化多糖类抗生素 | (体外)黄霉素 | 粪肠球菌→粪肠球菌 | 8-16 mmol/L : 50-70倍 | [ | ||
大肠杆菌→粪肠球菌 | IncFIB,IncI1-Iγ,IncN | blaCTX-M-15,blaCTX-M-14, blaCTX-M-2 | 0.5 mmol/L FPL : 7.2-10.7倍 | [ | ||
(体内)黄霉素 | 大肠杆菌→沙门氏菌 | str,tet,amp | 饲料中添加64 ppm的黄霉素对接合转移具有抑制作用 | [ | ||
亚水杨基酰肼类及其衍生物 | BAR-072,BAR-073,UM-024 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | BAR-072 : 10倍 | [ | |
105055,239852 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | 105055和239852 : 2倍 | [ | ||
拟肽类化合物 | C10,KSK85 | 大肠杆菌→大肠杆菌 | pKM101(IncN)和R1-16(IncF) | (150 μm)C10 : 4倍 | [ | |
纳米材料 | nano-Al2O3,nano-TiO2,nano-SiO2和nano-Fe2O3 | 大肠杆菌→大肠杆菌、沙门氏菌 | RP4(IncP) | 5000 mmol/L : 100倍* | [ | |
CuO NPs / Cu2+ | 大肠杆菌→恶臭假单胞菌 | RP4(IncP) | (5 mmol/L)CuO NPs : 40倍* | [ | ||
Fe2O3@MoS2 | 大肠杆菌→大肠杆菌 | RP4-7(IncP) | Fe2O3(0.1 g)@MoS2 : 100倍 | [ | ||
CeO2 纳米材料 | 大肠杆菌→大肠杆菌 | RP4(IncP) | (1 000和5 000 μg/L)CeO2 NPs : 4倍 | [ | ||
等离子体 | 等离子体 | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1,aac(3)-II | 9 kv(10 min): 1 000倍 | [ | |
NO3-,Cu2+,Fe2+ | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1, aac(3)-II,intI1 | Fe2+: 98倍 | [ | ||
其他 | 双膦酸盐(PNP) | 大肠杆菌→大肠杆菌 | IncF | 10 mmol/L(PNP): 90倍 | [ | |
单链Fv抗体 | 大肠杆菌→大肠杆菌 | R388(IncW) | scFv-P4.E7: 20倍 | [ | ||
自由亚硝酸 | 大肠杆菌→大肠杆菌 | RP4(IncP) | 20 μg/L:100倍 | [ |
[1] | O'Neill J. Antimicrobial Resistance:Tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance[M]. London: The UK Prime Minister, 2014. |
[2] | Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clin Microbiol Rev, 2018, 31(4): e00088-e00017. |
[3] |
San MA. Evolution of plasmid-mediated antibiotic resistance in the clinical context[J]. Trends Microbiol, 2018, 26(12): 978-985.
doi: S0966-842X(18)30142-2 pmid: 30049587 |
[4] |
Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing[J]. FEMS Microbiol Rev, 2018, 42(6): 781-804.
doi: 10.1093/femsre/fuy031 pmid: 30085063 |
[5] |
Vrancianu CO, Popa LI, Bleotu C, et al. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance[J]. Front Microbiol, 2020, 11: 761.
doi: 10.3389/fmicb.2020.00761 pmid: 32435238 |
[6] |
Patangia DV, Ryan CA, Dempsey E, et al. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis[J]. Trends Microbiol, 2022, 30(1): 47-56.
doi: 10.1016/j.tim.2021.05.006 URL |
[7] |
von Wintersdorff CJH, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Front Microbiol, 2016, 7: 173.
doi: 10.3389/fmicb.2016.00173 pmid: 26925045 |
[8] |
Liu YY, Chen S, Burrus V, et al. Editorial: globally or regionally spread of epidemic plasmids carrying clinically important resistance genes: epidemiology, molecular mechanism, and drivers[J]. Front Microbiol, 2021, 12: 822802.
doi: 10.3389/fmicb.2021.822802 URL |
[9] |
Redondo-Salvo S, Fernández-López R, Ruiz R, et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids[J]. Nat Commun, 2020, 11(1): 3602.
doi: 10.1038/s41467-020-17278-2 pmid: 32681114 |
[10] |
Québatte M, Christen M, Harms A, et al. Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen[J]. Cell Syst, 2017, 4(6): 611-621.e6.
doi: S2405-4712(17)30226-0 pmid: 28624614 |
[11] |
Lopatkin AJ, Meredith HR, Srimani JK, et al. Persistence and reversal of plasmid-mediated antibiotic resistance[J]. Nat Commun, 2017, 8(1): 1689.
doi: 10.1038/s41467-017-01532-1 pmid: 29162798 |
[12] |
Smillie C, Garcillán-Barcia MP, Francia MV, et al. Mobility of plasmids[J]. Microbiol Mol Biol Rev, 2010, 74(3): 434-452.
doi: 10.1128/MMBR.00020-10 URL |
[13] |
Guglielmini J, Quintais L, Garcillán-Barcia MP, et al. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation[J]. PLoS Genet, 2011, 7(8): e1002222.
doi: 10.1371/journal.pgen.1002222 URL |
[14] |
Guglielmini J, Néron B, Abby SS, et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion[J]. Nucleic Acids Res, 2014, 42(9): 5715-5727.
doi: 10.1093/nar/gku194 pmid: 24623814 |
[15] |
Low HH, Gubellini F, Rivera-Calzada A, et al. Structure of a type IV secretion system[J]. Nature, 2014, 508(7497): 550-553.
doi: 10.1038/nature13081 URL |
[16] |
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems[J]. Microbiol Mol Biol Rev, 2009, 73(4): 775-808.
doi: 10.1128/MMBR.00023-09 URL |
[17] | Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[J]. EMBO Rep, 2019, 20(2): e47012. |
[18] |
Chandran Darbari V, Waksman G. Structural biology of bacterial type IV secretion systems[J]. Annu Rev Biochem, 2015, 84: 603-629.
doi: 10.1146/annurev-biochem-062911-102821 pmid: 26034891 |
[19] | Getino M, de la Cruz F. Natural and artificial strategies to control the conjugative transmission of plasmids[J]. Microbiol Spectr, 2018, 6(1). |
[20] |
Zechner EL, Moncalián G, de la Cruz F. Relaxases and plasmid transfer in gram-negative bacteria[J]. Curr Top Microbiol Immunol, 2017, 413: 93-113.
doi: 10.1007/978-3-319-75241-9_4 pmid: 29536356 |
[21] |
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective[J]. Mol Microbiol, 2012, 85(4): 602-617.
doi: 10.1111/j.1365-2958.2012.08131.x pmid: 22788760 |
[22] |
Llosa M, Gomis-Rüth FX, Coll M, et al. Bacterial conjugation: a two-step mechanism for DNA transport[J]. Mol Microbiol, 2002, 45(1): 1-8.
pmid: 12100543 |
[23] |
Draper O, César CE, Machón C, et al. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells[J]. Proc Natl Acad Sci USA, 2005, 102(45): 16385-16390.
doi: 10.1073/pnas.0506081102 URL |
[24] |
Garcillán-Barcia MP, Jurado P, González-Pérez B, et al. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies[J]. Mol Microbiol, 2007, 63(2): 404-416.
pmid: 17163977 |
[25] | Fernandez-Lopez R, Machón C, Longshaw CM, et al. Unsaturated fatty acids are inhibitors of bacterial conjugation[J]. Microbiology(Reading), 2005, 151(Pt 11): 3517-3526. |
[26] |
Li G, Xia LJ, Zhou SY, et al. Linoleic acid and α-linolenic acid inhibit conjugative transfer of an IncX4 plasmid carrying mcr-1[J]. J Appl Microbiol, 2021, 130(6): 1893-1901.
doi: 10.1111/jam.14885 URL |
[27] | Getino M, Sanabria-Ríos DJ, Fernández-López R, et al. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer[J]. mBio, 2015, 6(5): e01032-e01015. |
[28] |
Palencia-Gándara C, Getino M, Moyano G, et al. Conjugation inhibitors effectively prevent plasmid transmission in natural environments[J]. mBio, 2021, 12(4): e0127721.
doi: 10.1128/mBio.01277-21 URL |
[29] |
Getino M, Fernández-López R, Palencia-Gándara C, et al. Tanzawaic acids, a chemically novel set of bacterial conjugation inhibitors[J]. PLoS One, 2016, 11(1): e0148098.
doi: 10.1371/journal.pone.0148098 URL |
[30] |
García-Cazorla Y, Getino M, Sanabria-Ríos DJ, et al. Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPase TrwD, providing a mechanism to inhibit bacterial conjugation[J]. J Biol Chem, 2018, 293(43): 16923-16930.
doi: 10.1074/jbc.RA118.004716 pmid: 30201608 |
[31] |
Walsh TR, Wu YN. China bans colistin as a feed additive for animals[J]. Lancet Infect Dis, 2016, 16(10): 1102-1103.
doi: S1473-3099(16)30329-2 pmid: 27676338 |
[32] |
van den Bogaard AE, Hazen M, Hoyer M, et al. Effects of flavophospholipol on resistance in fecal Escherichia coli and enterococci of fattening pigs[J]. Antimicrob Agents Chemother, 2002, 46(1): 110-118.
doi: 10.1128/AAC.46.1.110-118.2002 pmid: 11751120 |
[33] |
Lim K, Pennell M, Lewis S, et al. Effects of flavophospholipol on conjugation and plasmid curing of multidrug-resistant Salmonella enteritidis in broiler chickens[J]. JAC Antimicrob Resist, 2021, 3(1): dlab022.
doi: 10.1093/jacamr/dlab022 URL |
[34] |
Kimura J, Kudo H, Fukuda A, et al. Decreasing the abundance of tetracycline-resistant Escherichia coli in pig feces during nursery using flavophospholipol as a pig feed additive[J]. Vet Anim Sci, 2022, 15: 100236.
doi: 10.1016/j.vas.2022.100236 URL |
[35] |
Poole TL, McReynolds JL, Edrington TS, et al. Effect of flavophospholipol on conjugation frequency between Escherichia coli donor and recipient pairs in vitro and in the chicken gastrointestinal tract[J]. J Antimicrob Chemother, 2006, 58(2): 359-366.
doi: 10.1093/jac/dkl249 URL |
[36] |
Riedl S, Ohlsen K, Werner G, et al. Impact of flavophospholipol and vancomycin on conjugational transfer of vancomycin resistance plasmids[J]. Antimicrob Agents Chemother, 2000, 44(11): 3189-3192.
doi: 10.1128/AAC.44.11.3189-3192.2000 pmid: 11036050 |
[37] |
Kudo H, Usui M, Nagafuji W, et al. Inhibition effect of flavophospholipol on conjugative transfer of the extended-spectrum β-lactamase and vanA genes[J]. J Antibiot, 2019, 72(2): 79-85.
doi: 10.1038/s41429-018-0113-4 URL |
[38] |
Paschos A, den Hartigh A, Smith MA, et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation[J]. Infect Immun, 2011, 79(3): 1033-1043.
doi: 10.1128/IAI.00993-10 URL |
[39] |
Kauppi AM, Nordfelth R, Uvell H, et al. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia[J]. Chem Biol, 2003, 10(3): 241-249.
doi: 10.1016/S1074-5521(03)00046-2 URL |
[40] |
Casu B, Smart J, Hancock MA, et al. Structural analysis and inhibition of TraE from the pKM101 type IV secretion system[J]. J Biol Chem, 2016, 291(45): 23817-23829.
pmid: 27634044 |
[41] |
Casu B, Arya T, Bessette B, et al. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101[J]. Sci Rep, 2017, 7(1): 14907.
doi: 10.1038/s41598-017-14953-1 pmid: 29097752 |
[42] |
Svensson A, Larsson A, Emtenäs H, et al. Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli[J]. Chembiochem, 2001, 2(12): 915-918.
pmid: 11948880 |
[43] |
Chorell E, Pinkner JS, Phan G, et al. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity[J]. J Med Chem, 2010, 53(15): 5690-5695.
doi: 10.1021/jm100470t pmid: 20586493 |
[44] | Shaffer CL, Good JAD, Kumar S, et al. Peptidomimetic small molecules disrupt type IV secretion system activity in diverse bacterial pathogens[J]. mBio, 2016, 7(2): e00221-e00216. |
[45] |
Makabenta JMV, Nabawy A, Li CH, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36.
doi: 10.1038/s41579-020-0420-1 URL |
[46] |
Wang LL, Hu C, Shao LQ. The antimicrobial activity of nanoparticles: present situation and prospects for the future[J]. Int J Nanomedicine, 2017, 12: 1227-1249.
doi: 10.2147/IJN.S121956 URL |
[47] |
Kolatka K, Kubik S, Rajewska M, et al. Replication and partitioning of the broad-host-range plasmid RK2[J]. Plasmid, 2010, 64(3): 119-134.
doi: 10.1016/j.plasmid.2010.06.004 pmid: 20600283 |
[48] |
Qiu ZG, Yu YM, Chen ZL, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. PNAS, 2012, 109(13): 4944-4949.
doi: 10.1073/pnas.1107254109 pmid: 22411796 |
[49] |
Zhang S, Wang Y, Song HL, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera[J]. Environ Int, 2019, 129: 478-487.
doi: S0160-4120(19)31232-2 pmid: 31158594 |
[50] |
Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Res, 2020, 169: 115229.
doi: 10.1016/j.watres.2019.115229 URL |
[51] |
Wang HG, Qi HC, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes[J]. Ecotoxicol Environ Saf, 2019, 186: 109781.
doi: 10.1016/j.ecoenv.2019.109781 URL |
[52] |
Parra B, Tortella GR, Cuozzo S, et al. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids[J]. Ecotoxicol Environ Saf, 2019, 169: 662-668.
doi: 10.1016/j.ecoenv.2018.11.057 URL |
[53] |
Yu KQ, Chen FR, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer[J]. Environ Sci Technol, 2020, 54(16): 10012-10021.
doi: 10.1021/acs.est.0c01870 URL |
[54] |
Liu Y, Gao JF, Wang YW, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition[J]. J Hazard Mater, 2022, 432: 128722.
doi: 10.1016/j.jhazmat.2022.128722 URL |
[55] |
Matic I, Rayssiguier C, Radman M. Inter species gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species[J]. Cell, 1995, 80(3): 507-515.
pmid: 7859291 |
[56] |
Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation[J]. PLoS Genet, 2010, 6(10): e1001165.
doi: 10.1371/journal.pgen.1001165 URL |
[57] |
Crane JK, Cheema MB, Olyer MA, et al. Zinc blockade of SOS response inhibits horizontal transfer of antibiotic resistance genes in enteric bacteria[J]. Front Cell Infect Microbiol, 2018, 8: 410.
doi: 10.3389/fcimb.2018.00410 URL |
[58] |
Li H, Kang Z, Jiang EL, et al. Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation[J]. J Hazard Mater, 2021, 419: 126465.
doi: 10.1016/j.jhazmat.2021.126465 URL |
[59] |
Li H, Song RY, Wang YY, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma[J]. Water Res, 2021, 204: 117630.
doi: 10.1016/j.watres.2021.117630 URL |
[60] |
Lujan SA, Guogas LM, Ragonese H, et al. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase[J]. Proc Natl Acad Sci USA, 2007, 104(30): 12282-12287.
doi: 10.1073/pnas.0702760104 URL |
[61] |
Nash RP, McNamara DE, Ballentine WK 3rd, et al. Investigating the impact of bisphosphonates and structurally related compounds on bacteria containing conjugative plasmids[J]. Biochem Biophys Res Commun, 2012, 424(4): 697-703.
doi: 10.1016/j.bbrc.2012.07.012 URL |
[62] |
Huang HN, Liao JQ, Zheng X, et al. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus[J]. Water Res, 2019, 158: 383-391.
doi: S0043-1354(19)30360-4 pmid: 31059932 |
[63] |
Jia YQ, Yang BQ, Shi JR, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force[J]. Pharmacol Res, 2022, 175: 105978.
doi: 10.1016/j.phrs.2021.105978 URL |
[64] |
Liu Y, Jia YQ, Yang KN, et al. Melatonin overcomes MCR-mediated colistin resistance in gram-negative pathogens[J]. Theranostics, 2020, 10(23): 10697-10711.
doi: 10.7150/thno.45951 pmid: 32929375 |
[65] |
Costa TRD, Ilangovan A, Ukleja M, et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex[J]. Cell, 2016, 166(6): 1436-1444.e10.
doi: S0092-8674(16)31076-5 pmid: 27610568 |
[66] |
Amin H, Ilangovan A, Costa TRD. Architecture of the outer-membrane core complex from a conjugative type IV secretion system[J]. Nat Commun, 2021, 12(1): 6834.
doi: 10.1038/s41467-021-27178-8 pmid: 34824240 |
[67] |
Liu XG, Khara P, Baker ML, et al. Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids[J]. Nat Commun, 2022, 13(1): 379.
doi: 10.1038/s41467-022-28058-5 pmid: 35046412 |
[1] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[2] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[5] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[6] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[7] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[8] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[9] | MA Qiu-yu, YUAN Fang. Research Progress in Salt Gland Secretion and Development in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 74-85. |
[10] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[11] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[12] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[13] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[14] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[15] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||