[1] Lambowitz AM, Zimmerly S.Mobile group II introns[J]. Annu Rev Genet, 2004, 38:1-35. [2] Toro N, Molina-Sanchez MD, Nisa-Martinez R, et al.Bacterial group II introns:identification and mobility assay[J]. Methods in Molecular Biology, 2016, 1400:21-32. [3] Pyle AM.Group II intron self-splicing[J]. Annu Rev Biophys, 2016, 45:183-205. [4] Zhao C, Pyle AM.The maturase:a reverse transcriptase and splicing factor go hand in hand[J]. Curr Opin Struct Biol, 2017, 47:30-39. [5] Lambowitz AM, Zimmerly S.Group II introns:mobile ribozymes that invade DNA[J]. Cold Spring Harb Perspect Biol, 2011, 3(8):a003616. [6] Enyeart PJ, Mohr G, Ellington AD, et al.Biotechnological applications of mobile group II introns and their reverse transcriptases:gene targeting, RNA-seq, and non-coding RNA analysis[J]. Mobile DNA, 2014, 5(1):2. [7] Lambowitz AM, Belfort M.Mobile Bacterial Group II introns at the crux of eukaryotic evolution[J]. Microbiology Spectrum, 2015, 3(1):MDNA3-0050-2014. [8] McNeil BA, Semper C, Zimmerly S. Group II introns:versatile ribozymes and retroelements[J]. Wiley interdisciplinary reviews RNA, 2016, 7(3):341-355. [9] Qu G, Kaushal PS, Wang J, et al.Structure of a group II intron in complex with its reverse transcriptase[J]. Nat Struct Mol Biol, 2016, 23(6):549-557. [10] 刘亚君, 崔古贞, 洪伟, 等. 典型产纤维小体梭菌的遗传改造及其在纤维素乙醇中的应用研究进展[J]. 生物加工过程, 2014, 12(1):55-62. [11] Cui GZ, Zhang J, Hong W, et al.Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system[J]. Appl Microbiol Biotechnol, 2014, 98(1):313-323. [12] Cui GZ, Hong W, Zhang J, et al.Targeted gene engineering in Clostridium cellulolyticum H10 without methylation[J]. Journal of Microbiological Methods, 2012, 89(3):201-208. [13] Heap JT, Pennington OJ, Cartman ST, et al.A modular system for Clostridium shuttle plasmids[J]. Journal of Microbiological Methods, 2009, 78(1):79-85. [14] Shao L, Hu S, Yang Y, et al.Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J]. Cell Research, 2007, 17(11):963-965. [15] Heap JT, Pennington OJ, Cartman ST, et al.The ClosTron:a universal gene knock-out system for the genus Clostridium[J]. Journal of Microbiological Methods, 2007, 70(3):452-464. [16] Yao J, Zhong J, Fang Y, et al.Use of targetrons to disrupt essential and nonessential genes in Staphylococcus aureus reveals temperature sensitivity of Ll. LtrB group II intron splicing[J]. RNA, 2006, 12(7):1271-1281. [17] Yao J, Lambowitz AM.Gene targeting in gram-negative bacteria by use of a mobile group II intron(“Targetron”)expressed from a broad-host-range vector[J]. Applied and Environmental Microbiology, 2007, 73(8):2735-2743. [18] Zhang J, Liu YJ, Cui GZ, et al.A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum[J]. Biotechnology for Biofuels, 2015, 8:36. [19] Alonzo F, 3rd, Port GC, Cao M, et al. The posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis[J]. Infection and Immunity, 2009, 77(7):2612-2623. [20] Sayeed S, Uzal FA, Fisher DJ, et al.Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model[J]. Molecular Microbiology, 2008, 67(1):15-30. [21] Carter GP, Awad MM, Hao Y, et al.TcsL is an essential virulence factor in Clostridium sordellii ATCC 9714[J]. Infection and Immunity, 2011, 79(3):1025-1032. [22] Zoraghi R, See RH, Gong H, et al.Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus[J]. Biochemistry, 2010, 49(35):7733-7747. [23] Zoraghi R, Worrall L, See RH, et al.Methicillin-resistant Staphylococcus aureus(MRSA)pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities[J]. The Journal of Biological Chemistry, 2011, 286(52):44716-44725. [24] 张雪, 温廷益. Red重组系统用于大肠杆菌基因修饰研究进展[J]. 中国生物工程杂志, 2008, 28(12):89-93. [25] 吴璐, 王磊, 任远, 等. 基因组编辑技术研究进展[J]. 生物技术通报, 2014(11):84-90. |