Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (7): 162-171.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1012
Previous Articles Next Articles
QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang
Received:
2018-11-23
Online:
2019-07-26
Published:
2019-07-29
QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang. Research Progress of Fe3+ Reductase Genes(FRO)in Plants[J]. Biotechnology Bulletin, 2019, 35(7): 162-171.
[1] Hanke GT, Kimata-Ariga Y, Taniguchi I, et al.A post genomic characterization of Arabidopsis ferredoxins[J]. Plant Physiology, 2004, 134(1):255-264. [2] Halliwell B, Gutteridge JM.Biologically relevant metal ion-dependent hydroxyl radical generation. An update[J]. Febs Letters, 1992, 307(1):108-112. [3] Guerinot ML, Ying Yi.Iron:Nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3):815-820. [4] Eide D, Broderius M, Fett J, et al.A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc Natl Acad Sci USA, 1996, 93(11):5624-5628. [5] Robinson NJ, Procter CM, Connolly EL, et al.A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697. [6] Schagerlof U, Wilson G, Hebert H, et al.Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana[J]. Plant Mol Biol, 2006, 62(1/2):215-221. [7] Connolly EL, Campbell NH, Grotz N, er al. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control[J]. Plant Physiology, 2003, 133(3):1102-1110. [8] Vasconcelos MW, Clemente TE, Grusak MA.Evaluation of constitutive iron reductase(AtFRO2)expression on mineral accumulation and distribution in soybean(Glycine max L.)[J]. Front Plant Sci, 2014, 5:112. [9] Einset J, Winge P, Bones AM, et al.The FRO2 ferric reductase is required for glycine betaine’s effect on chilling tolerance in Arabidopsis roots[J]. Physiologia Plantarum, 2008, 134(2):334-341. [10] Wu H, Li LH, Du J, et al.Molecular and biochemical characterization of the Fe(III)chelate reductase gene family in Arabidopsis thaliana[J]. Plant Cell Physiol, 2005, 46(9):1505-1514. [11] Sivitz A, Grinvalds C, Barberon M, et al.Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses[J]. Plant J, 2011, 66(6):1044-1052. [12] Mai HJ, Pateyron S, Bauer P.Iron homeostasis in Arabidopsis thaliana:transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks[J]. BMC Plant Biology, 2016, 16(1):211. [13] Colangelo EP, Guerinot ML.The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. The Plant Cell, 2004, 16(12):3400-3412. [14] Brumbarova T, Bauer P, Ivanov R.Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends Plant Sci, 2015, 20(2):124-133. [15] Garcia MJ, Suarez V, Romera FJ, et al.A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants[J]. Plant Physiol Biochem, 2011, 49(5):537-544. [16] Lucena C, Romera FJ, Garcia MJ, et al.Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Front Plant Sci, 2015, 6:1056. [17] Wild M, Davière JM, Regnault T, et al.Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses[J]. Developmental Cell, 2016, 37(2):190-200. [18] Garcia MJ, Garcia-Mateo MJ, Lucena, C, et al.Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum, 2014, 150(1):95-106. [19] Shanmugam V, Wang YW, Tsednee M, et al.Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis[J]. Plant J, 2015, 84(3):464-477. [20] Satbhai SB, Setzer C, Freynschlag F, et al.Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency[J]. Nature Communications, 2017, 8:15603. [21] Bernal M, Casero D, Singh V, et al.Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis[J]. The Plant Cell, 2012, 24(2):738-761. [22] Yamasaki H, Hayashi M, Fukazawa M, et al.SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(1):347-361. [23] Gielen H, Remans T, Vangronsveld J, et al.Toxicity responses of Cu and Cd:the involvement of miRNAs and the transcription factor SPL7[J]. BMC Plant Biology, 2016, 16(1):145. [24] Rellan-Alvarez R, Giner-Martínez-Sierra J, Orduna J, et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron:new insights into plant iron long-distance transport[J]. Plant Cell Physiol, 2010, 51(1):91-102. [25] Gayomba SR, Zhai Z, Jung HI, et al.Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements[J]. Front Plant Sci, 2015, 6:716. [26] Mukherjee I, Campbell NH, Ash JS, et al.Expression profiling of the Arabidopsis ferric chelate reductase(FRO)gene family reveals differential regulation by iron and copper[J]. Planta, 2006, 223(6):1178-1190. [27] Lopez-Millan AF, Duy D, Philippar K.Chloroplast iron transport proteins - function and impact on plant physiology[J]. Front Plant Sci, 2016, 7:178. [28] Feng HZ, An FY, Zhang SZ, et al.Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6[J]. Plant Physiology, 2006, 140(4):1345-1354. [29] Jeong J, Cohu C, Kerkeb L, et al.Chloroplast Fe(III)chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proc Natl Acad Sci USA, 2008, 105(30):10619-10624. [30] Jain A, Wilson GT, Connolly EL.The diverse roles of FRO family metalloreductases in iron and copper homeostasis[J]. Front Plant Sci, 2014, 5:100. [31] Li LY, Cai QY, Yu DS, et al.Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis[J]. Mol Biol Rep, 2011, 38(6):3605-3613. [32] Jain A, Connolly EL.Mitochondrial iron transport and homeostasis in plants[J]. Front Plant Sci, 2013, 4:348. [33] Jeong J, Connolly EL.Iron uptake mechanisms in plants:Functions of the FRO family of ferric reductases[J]. Plant Science, 2009, 176(6):709-714. [34] Long TA, Tsukagoshi H, Busch W, et al.The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. The Plant Cell, 2010, 22(7):2219-2236. [35] Ling HQ, Bauer P, Bereczky Z, et al.The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proc Natl Acad Sci USA, 2002, 99(21):13938-13943. [36] Du J, Huang ZA, Wang B, et al.SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany, 2015, 116(1):23-34. [37] Li LH, Cheng XD, Ling HQ.Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004, 54(1):125-136. [38] Zamboni A, Zanin L, Tomasi N, et al.Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent[J]. BMC Genomics, 2016, 17:35. [39] Zamboni A, Zanin L, Tomasi N, et al.Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency[J]. BMC Genomics, 2012, 13:101. [40] Paolacci AR, Celletti S, Catarcione G, et al.Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato(Solanum lycopersicum L.)seedlings[J]. Journal of Integrative Plant Biology, 2014, 56(1):88-100. [41] Kong DY, Chen CL, Wu HL, et al.Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato[J]. Journal of Genetics and Genomics, 2013, 40(11):565-573. [42] Prasad PVV.NUTRITION _ Iron Chlorosis[M]. Encyclopedia of Applied Plant Sciences, 2003:649-656. [43] Santos CS, Roriz M, Carvalho SM, et al.Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants(Glycine max L.)[J]. Front Plant Sci, 2015, 6:325. [44] Qiu W, Dai J, Wang NQ, et al.Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean[J]. Plant Physiol Biochem, 2017, 112:1-8. [45] Ishimaru Y, Suzuki M, Tsukamoto T, et al.Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant J, 2006, 45(3):335-346. [46] Finatto T, de Oliveira AC, Chaparro C, et al. Abiotic stress and genome dynamics:specific genes and transposable elements response to iron excess in rice[J]. Rice, 2015, 8:13. [47] Pereira MP, Santos C, Gomes A, et al.Cultivar variability of iron uptake mechanisms in rice(Oryza sativa L.)[J]. Plant Physiol and Biochemistry, 2014, 85:21-30. [48] Li Q, Yang A, Zhang WH.Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.)[J]. Journal of Experimental Botany, 2016, 67(22):6431-6444. [49] Kobayashi T, Nakanishi IR, Nishizawa NK.Iron deficiency responses in rice roots[J]. Rice, 2014, 7(1):27. [50] Cheng LJ, Wang F, Shou HX, et al.Mutation in nicotianamine aminotransferase stimulated the Fe(II)acquisition system and led to iron accumulation in rice[J]. Plant Physiology, 2007, 145(4):1647-1657. [51] Ricachenevsky FK, Sperotto RA.There and back again, or always there? The evolution of rice combined strategy for Fe uptake[J]. Front Plant Sci, 2014, 5:189. [52] Sun HW, Feng F, Liu J, et al.The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice[J]. Front Plant Sci, 2017, 8:2169. [53] Santos RS, Araujo AT, Pegoraro C, et al.Dealing with iron metabolism in rice:from breeding for stress tolerance to biofortification[J]. Genetics and Molecular Biology, 2017, 40(1):312-325. [54] Ishimaru Y, Kim S, Tsukamoto T, et al.Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J]. Proc Natl Acad Sci USA, 2007, 104(18):7373-7378. [55] Masuda H, Shimochi E, Hamada T, et al.A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil[J]. PLoS One, 2017, 12(3):e0173441. [56] Ding H, Duan LH, Wu HL, et al.Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009, 136(3):274-283. [57] Ding H, Duan LH, Li J, et al.Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize[J]. Journal of Plant Physiology, 2010, 167(12):996-1002. [58] Xiong H, Shen H, Zhang L, et al.Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping[J]. Journal of Proteomics, 2013, 78:447-460. [59] Guo XT, Xiong HC, Shen HY, et al.Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize:role in improving iron nutrition in peanut[J]. Plant Physiol Biochem, 2014, 76:36-43. [60] Andaluz S, Rodriguez-Celma J, Abadia A, et al.Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency[J]. Plant Physiol Biochem, 2009, 47(11/12):1082-1088. [61] Del C orozco-Mosqueda M, Santoyo G, Farías-Rodríguez R, et al. Identification and expression analysis of multiple FRO gene copies in Medicago truncatula[J]. Genetics and Molecular Research, 2012, 11(4):4402-4410. [62] Toledo-Ortiz G.The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8):1749-1770. [63] Yuan Y, Wu HL, Wang N, et al.FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research, 2008, 18(3):385-397. [64] Wang N, Cui Y, Liu Y, et al.Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana[J]. Molecular Plant, 2013, 6(2):503-513. [65] Zhang J, Liu B, Li MS, et al.The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. Plant Cell, 2015, 27(3):787-805. [66] Li SZ, Zhou XJ, Li HB, et al.Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e0136647. [67] Li SZ, Zhou XJ, Huang YQ, et al.Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein(ZIP)gene family in maize[J]. BMC Plant Biology, 2013, 13(1):114. [68] Zanin L, Venuti S, Zamboni A, et al.Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions[J]. BMC Genomics, 2017, 18(1):154. [69] Li SZ, Zhou XJ, Chen JT, et al.Is there a strategy I iron uptake mechanism in maize?[J]. Plant Signal Behavior, 2018, 13(4):e1161877. |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[3] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[6] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[7] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[10] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[11] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[12] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[13] | GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 36-46. |
[14] | YIN Zhuo-ran, XUAN Dong-dong, LI Chen-yi, LI Chang, CHAI Zhe, WANG Kun-yao, ZHAO Meng-qi, PENG Jing-yuan, DONG Jie, JIA Hong-fang. Cloning and Functional Analysis of Gene NtNRAMP3b in Nicotiana tabacum [J]. Biotechnology Bulletin, 2022, 38(12): 175-183. |
[15] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||