[1] 王尧龙, 黄璐琦, 袁媛, 等. 药用植物转录组研究进展[J]. 中国中药杂志, 2015, 40(11):2055-2061. [2] 刘冠, 赵婷婷, 杨欢欢, 等. 番茄转录组学研究进展[J]. 基因组学与应用生物学, 2016, 35(10):2802-2807. [3] Velculescu VE, Zhang L, Zhou W, et al.Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2):243-251. [4] 邹丽秋, 匡雪君, 李滢, 等. 人参属药用植物转录组研究进展[J]. 中国中药杂志, 2016, 41(22):4138-4143. [5] 李霞, 王顺利. 高通量转录组在园艺植物色素代谢中的研究进展[J]. 生物技术通报, 2017, 33(7):7-14. [6] 倪知游, 梁东, 高帆, 等. 植物响应干旱的转录组学研究进展[J]. 分子植物育种, 2018, 16(8):2460-2465. [7] 谭淑端, 朱明勇, 张克荣, 等. 植物对水淹胁迫的响应与适应[J]. 生态学杂志, 2009, 28(9):1871-1877. [8] Bodegom PMV, Sorrell BK, Oosthoek A, et al.Separating the effects of partial submergence and soil oxygen demand on plant physiology[J]. Ecology, 2008, 89(1):193-204. [9] 田志环. 淹涝胁迫对水稻影响的研究进展[J]. 安徽农业科学, 2018(1):143-145. [10] 季晶. 黄瓜涝胁迫下超微结构变化及差异蛋白组学研究[D]. 扬州:扬州大学, 2016. [11] Bailey-Serres J, Chang R.Sensing and signalling in response to oxygen deprivation in plants and other organisms[J]. Ann Bot, 2005, 96(4):507-518. [12] Zabalza A, Van Dongen JT, Froehlich A, et al.Regulation of respiration and fermentation to control the plant internal oxygen concentration[J]. Plant Physiol, 2008, 149(2):1087-1098. [13] Subbaiah CC.A Ca2+-dependent cysteine protease is associated with anoxia-induced root tip death in maize[J]. J Exp Bot, 2000, 51(345):721-730. [14] Kazan K.Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends Plant Sci, 2015, 20(4):219-229. [15] Alexander L.Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening[J]. Journal of Experimental Botany, 2002, 53(377):2039-2055. [16] Boer KD, Tilleman S, Pauwels L, et al.Apetala2/ethylene response factor and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis[J]. Plant Journal, 2011, 66(6):1053-1065. [17] Hattori Y, Nagai K, Furukawa S, et al.The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258):1026-1030. [18] Ayano M, Kani T, Kojima M, et al.Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice[J]. Plant Cell Environ, 2014, 37(10):2313-2324. [19] 邹锡玲. 玉米苗期根系淹水应答相关基因的筛选、克隆以及鉴定[D]. 武汉:华中农业大学, 2011. [20] Drew MC, He CJ, Morgan PW.Programmed cell death and aerenchyma formation in roots[J]. Trends in Plant Science, 2000, 5(3):123-127. [21] 张小娟, 汪双喜, 李常凤, 等. 棉花涝渍胁迫的耐受及应答机制研究进展[J]. 中国农学通报, 2017(33):22-32. [22] 王翠英, 李鑫宇, 王潇然, 等. 地黄根部响应涝胁迫关键基因的鉴定[J]. 中国现代中药, 2017, 19(2):232-238. [23] Vidoz ML, Loreti E, et al.Hormonal interplay during adventitious root formation in flooded tomato plants[J]. Plant J, 2010, 63(4):12. [24] Qi XH, Xu XW, Lin XJ, et al.Identification of differentially expressed genes in cucumber(Cucumis sativus L.)root under waterlogging stress by digital gene expression profile[J]. Genomics, 2012, 99(3):160-168. [25] Kushiro T, Okamoto M, et al.The arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism[J]. Embo Journal, 2014, 23(7):1647-1656. [26] Zhang YJ, Chen YZ, Lu HQ, et al.Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging[J]. Field Crops Research, 2016, 194:83-93. [27] 潘澜, 薛晔, 薛立. 植物淹水胁迫形态学研究进展[J]. 中国农学通报, 2011, 27(7):11-15. [28] Christianson JA, Llewellyn DJ, et al.Global gene expression responses to waterlogging in roots and leaves of cotton(Gossypium hirsutum L.).[J]. Plant Cell Physiol, 2010, 51(1):21-37. [29] Lee YH, Kim KS, Jang YS, et al.Global gene expression responses to waterlogging in leaves of rape seedlings[J]. Plant Cell Reports, 2014, 33(2):289-299. [30] 陈强, 郭修武, 等. 淹水对甜樱桃根系呼吸强度和呼吸酶活性的影响[J]. 应用生态学报, 2008, 19(7):1462-1466. [31] Tadege M.Ethanolic fermentation:new functions for an old pathway[J]. Trends Plant Sci, 1999, 4(8):320-325. [32] 沙向红, 梁燕, 严建萍, 等. 淹涝胁迫对幼苗期大豆根系乙醇脱氢酶1基因和乙醛脱氢酶7基因表达的影响[J]. 广东农业科学, 2011, 38(18):12-14. [33] 赵森, 等. 荧光定量PCR检测淹涝胁迫下水稻Adh2基因的表达量变化[J]. 中国生态农业学报, 2008, 16(2):455-458. [34] 黄胜男, 张计育, 莫正海, 等. 猕猴桃丙酮酸脱羧酶2基因(AdPDC2)的克隆与功能分析[C]. 中国园艺学会2015年学术年会, 2015. [35] Meyer Y, Belin C, et al.Thioredoxin and glutaredoxin systems in plants:molecular mechanisms, crosstalks, and functional signifi-cance[J]. Antioxid Redox Signal, 2012, 17(8):1124-1160. [36] Noctor G, Mhamdi A, Foyer CH.The roles of reactive oxygen metabolism in drought:not so cut and dried[J]. Plant Physiology, 2014, 164(4):1636-1648. [37] Gill SS, Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930. [38] Mustroph A, Lee SC, Oosumi T, et al.Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses[J]. Plant Physiology, 2010, 152(3):1484-1500. [39] Lindemose S, O’Shea C, Jensen M, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. Int J Mol Sci, 2013, 14(3):5842-5878. [40] 陈儒钢, 巩振辉, 逯明辉, 等. 植物抗逆反应中的转录因子网络研究进展[J]. 农业生物技术学报, 2010(1):126-134. [41] 李桂英, 田玉富, 杨成君. 植物GRAS家族转录因子的研究现状[J]. 安徽农业科学, 2014, 42(14):4207-4210. [42] 孙利军, 李大勇, 等. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用[J]. 遗传, 2012, 34(8):993-1002. [43] Huang W, Xian Z, Kang X, et al.Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato[J]. BMC Plant Biology, 2015, 15(1):209. [44] 李彦杰, 杨俊年, 刘仁华, 等. 水淹胁迫下三峡库区消落带适生狗牙根转录因子的转录组分析[J]. 西南农业学报, 2018, 31(2):265-269. [45] 惠林冲. 莲藕NnDREB2A克隆、表达分析和功能验证[D]. 扬州:扬州大学, 2015. [46] Zou X, Jiang Y, Liu L, et al.Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging[J]. BMC Plant Biology, 2010, 10(1):189. [47] 栗振义, 龙瑞才, 张铁军, 等. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2):7-13. [48] 张健, 刘美艳, 申杰, 等. 外源亚精胺对淹涝胁迫下黄瓜根HSP70表达的影响[J]. 广西植物, 2013, 33(5):669-673. |