Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (8): 232-237.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0131
Previous Articles Next Articles
LI Ran, HUANG Yu-qing, JIA Zhen-hua
Received:
2019-02-21
Online:
2019-08-26
Published:
2019-08-05
LI Ran, HUANG Yu-qing, JIA Zhen-hua. Research of Progress of Strategy and Application of Metabolic Pathway Modification in Escherichia coli[J]. Biotechnology Bulletin, 2019, 35(8): 232-237.
[1] Li Y, Chen J, Lun SY.Biotechnological production of pyruvic acid[J]. Applied Microbiology & Biotechnology, 2001, 57(4):451-459. [2] Atsumi S, Hanai T, Liao JC.Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174):86-89. [3] Nielsen DR, Yoon SH, Yuan CJ, et al.Engineering Acetoin and meso-2, 3-butanediol biosynthesis in E. coli[J]. Biotechnology Journal, 2010, 5(3):274-284. [4] 宋灿辉, 张伟国. 敲除aceE基因对大肠杆菌生长和丙酮酸代谢的影响[J]. 生物加工过程, 2013, 11(6):15-18. [5] Causey TB, Zhou S, Shanmugam KT, et al.Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products:Homoacetate production[J]. Proceedings of the National Academy of Sciences, 2003, 100(3):825-832. [6] Causey TB, Shanmugam KT, Yomano LP, et al.Engineering Escherichia coli for efficient conversion of glucose to pyruvate[J]. Proceedings of the National Academy of Sciences, 2004, 101(8):2235-2240. [7] Zelić B, Gostović S, Vuorilehto K, et al.Process strategies to enhance pyruvate production with recombinant Escherichia coli:From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis[J]. Biotechnology & Bioengineering, 2010, 85(6):638-646. [8] Zhu Y, Eiteman MA, Dewitt K, et al.Homolactate fermentation by metabolically engineered Escherichia coli strains[J]. Applied & Environmental Microbiology, 2007, 73(2):456-464. [9] Atsumi S, Cann AF, Connor MR, et al.Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2007, 10(6):305-311. [10] Shen CR, Lan EI, Dekishima Y, et al.Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli[J]. Applied & Environmental Microbiology, 2011, 77(9):2905-2915. [11] Baek JM, Mazumdar S, Lee SW, et al.Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10):2790-2794. [12] Gulevich AY, Skorokhodova AY, Sukhozhenko AV, et al.Biosynthesis of enantiopure(S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli[J]. Journal of Biotechnology, 2017, 244:16-24. [13] Jian J, Zhang SQ, Shi ZY, et al.Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways[J]. Applied Microbiology & Biotechnology, 2010, 87(6):2247-2256. [14] Kim Y, Ingram LO, Shanmugam KT.Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12[J]. Journal of Bacteriology, 2008, 190(11):3851. [15] Boldt J, Khandurina J, Trawick JD, et al.Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7):445-452. [16] Bond-Watts BB, Bellerose RJ, Chang MCY.Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways[J]. Nature Chemical Biology, 2011, 7(4):222-227. [17] Xu P, Gu Q, Wang W, et al.Modular optimization of multi-gene pathways for fatty acids production in E. coli[J]. Nature Communications, 2013, 4:1409. [18] Lin H, Castro NM, Bennett GN, et al.Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation:a potential tool in metabolic engineering[J]. Applied Microbiology & Biotechnology, 2006, 71(6):870-874. [19] Martin VJJ, Pitera DJ, Withers ST, et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7):796-802. [20] Harada H, Yu F, Okamoto S, et al.Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli[J]. Applied Microbiology and Biotechnology, 2008, 81(5):915-925. [21] Morrone D, Lowry L, Determan MK, et al.Increasing diterpene yield with a modular metabolic engineering system in E. coli:comparison of MEV and MEP isoprenoid precursor pathway engineering[J]. Applied Microbiology and Biotechnology, 2010, 85(6):1893-1906. [22] Krämer M, Bongaerts J, Bovenberg R, et al.Metabolic engineering for microbial production of shikimic acid[J]. Metabolic Engineering, 2003, 5(4):277-283. [23] Dewick PM.The biosynthesis of shikimate metabolites[J]. Natural Product Reports, 1990, 7(3):165-189. [24] Draths KM, David RK, Frost JW.Shikimic acid and quinic Acid:Replacing isolation from plant sources with recombinant microbial biocatalysis[J]. Journal of the American Chemical Society, 1999, 121(7):1603-1604. [25] Noda S, Shirai T, Oyama S, et al.Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives[J]. Metabolic Engineering, 2016, 33:119-129. [26] Gosset G, Yongxiao J, Berry A.A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli[J]. Journal of Industrial Microbiology, 1996, 17(1):47-52. [27] Sengupta S, Jonnalagadda S, Goonewardena L, et al.Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli[J]. Applied and Environmental Microbiology, 2015, 81(23):8037-8043. [28] Shen CR, Liao JC.Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J]. Metabolic Engineering, 2008, 10(6):312-320. [29] Choi Y, Choi YJ, Park J, et al.Metabolic engineering of Escherichia coli for the production of 1-propanol[J]. PLoS One, 2012, 14(5):477-486. [30] Jain R, Yan Y.Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli[J]. Microbial Cell Factories, 2011, 10(1):1-10. [31] Hou X, Peng W, Xiong L, et al.Engineering Clostridium acetobutylicum for alcohol production[J]. Journal of Biotechnology, 2013, 166(1-2):25-33. [32] Jang YS, Lee JY, Lee J, et al.Enhanced butanol production obtained by reinforcing the direct butanol-forming route in clostridium acetobutylicum[J]. MBio, 2012, 3(5):e00314-12. [33] Lee JY, Yu SJ, Lee J, et al.Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production[J]. Biotechnology Journal, 2010, 4(10):1432-1440. [34] Shen CR, Lan EI, Dekishima Y, et al.Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli[J]. App-lied & Environmental Microbiology, 2011, 77(9):2905-2915. [35] Choi YJ, Lee SY.Microbial production of short-chain alkanes[J]. Nature, 2013, 502(7472):571-574. [36] Schirmer A, Rude MA, Li X, et al.Microbial biosynthesis of alkanes[J]. Science, 2010, 329(5991):559-562. [37] Henry L, Bennett GN, San KY.Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions[J]. Biotechnology & Bioengineering, 2010, 90(6):775-779. [38] Jantama K, Haupt MJ, Svoronos SA, et al.Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology & Bioengineering, 2010, 99(5):1140-1153. [39] Sanchez AM, Bennett GN, San KY.Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity[J]. Metabolic Engineering, 2005, 7(3):229-239. [40] Yang J, Wang Z, Zhu N, et al.Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions[J]. Microbiological Research, 2014, 169(5-6):432-440. [41] Boldt J, Khandurina J, Trawick JD, et al.Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7):445-452. [42] Fong SS, Burgard AP, Herring CD, et al.In silico design and adaptive evolution of Escherichia coli for production of lactic acid[J]. Biotechnology & Bioengineering, 2010, 91(5):643-648. [43] Jiang XL, Meng X, Xian M.Biosynthetic pathways for 3-hydroxypropionic acid production[J]. Applied Microbiology and Biotechnology, 2009, 82(6):995-1003. [44] Tseng HC, Harwell CL, Martin CH, et al.Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli[J]. Microbial Cell Factories, 2010, 9(1):96. [45] Tseng HC, Martin CH, Nielsen DR, et al.Metabolic engineering of Escherichia coli for enhanced production of(R)- and(S)-3-hydroxybutyrate[J]. Applied and Environmental Microbiology, 2009, 75(10):3137-3145. [46] Kim HJ, Hou BK, Lee SG, et al.Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli[J]. Metabolic Engineering, 2013, 18:44-52. [47] Mazumdar S, Blankschien MD, Clomburg JM, et al.Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli[J]. Microbial Cell Factories, 2013, 12:7. [48] Varman AM, Yu Y, You L, et al.Photoautotrophic production of D-lactic acid in an engineered cyanobacterium[J]. Microbial Cell Factories, 2013, 12(1):117. |
[1] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[2] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[3] | PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains [J]. Biotechnology Bulletin, 2023, 39(6): 298-307. |
[4] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[5] | TANG Rui-qi, ZHAO Xin-qing, ZHU Du, WANG Ya. Stress Tolerance of Escherichia coli to Inhibitors in Lignocellulosic Hydrolysates [J]. Biotechnology Bulletin, 2023, 39(11): 205-216. |
[6] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[7] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[8] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[9] | CHENG Shen-wei, ZHANG Ke-qiang, LIANG Jun-feng, LIU Fu-yuan, GAO Xing-liang, DU Lian-zhu. Establishment of a Triple Droplet Digital PCR Quantitative Detection Method for Typical Pathogenic Bacteria in Livestock and Poultry Manure [J]. Biotechnology Bulletin, 2022, 38(9): 271-280. |
[10] | ZHAO Yan-kun, LIU Hui-min, MENG Lu, WANG Cheng, WANG Jia-qi, ZHENG Nan. Research Progress in Heteroresistance of Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(9): 59-71. |
[11] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[12] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[13] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[14] | MA Qing-yun, JIANG Xu, LI Qing-qing, SONG Jin-long, ZHOU Yi-qing, RUAN Zhi-yong. Isolation and Identification of Nicosulfuron Degrading Strain Chryseobacterium sp. LAM-M5 and Study on Its Degradation Pathway [J]. Biotechnology Bulletin, 2022, 38(2): 113-122. |
[15] | LI Xiao-fang, LIU Hui-yan, PAN Lin, AI Zhi-yu, LI Yi-ming, ZHANG Heng, FANG Hai-tian. Breeding High-yield L-isoleucine Escherichia coli by ARTP Mutagenesis [J]. Biotechnology Bulletin, 2022, 38(1): 150-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||