[1] Bartel DP.MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. [2] Debat HJ, Ducasse DA.Plant microRNAs:recent advances and future challenges[J]. Plant Molecular Biology Reporter, 2014, 32(6):1257-1269. [3] Shukla LI, Chinnusamy V, Sunkar R.The role of microRNAs and other endogenous small RNAs in plant stress responses[J]. Biochimica Et Biophysica Acta, 2008, 1779(11):743-748. [4] Navarro L, Dunoyer P, Jay F, et al.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. [5] Li WX, Oono Y, Zhu J, et al.The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251. [6] Llave C, Xie Z, Kasschau KD, et al.Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589):2053-2056. [7] Li S, Liu L, Zhuang X, et al.MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J]. Cell, 2013, 153(3):562-574. [8] Thomson DW, Bracken CP, Goodall GJ.Experimental strategies for microRNA target identification[J]. Nucleic Acids Research, 2011, 39(16):6845-6853. [9] Song C, Jia Q, Fang J, et al.Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags[J]. Plant Biology, 2010, 12(6):927-934. [10] Li Y, Zhao SL, Li JL, et al.Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Front Plant Sci, 2017, 8(6):2. [11] Boutla A, Delidakis C, Tabler M.Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes[J]. Nucleic Acids Research, 2003, 31(17):4973-4980. [12] Baek D, Villén J, Shin C, et al.The impact of microRNAs on protein output[J]. Nature, 2008, 455(7209):64-71. [13] Sethupathy P, Megraw M, Hatzigeorgiou AG.A guide through present computational approaches for the identification of mammalian microRNA targets[J]. Nature Methods, 2006, 3(11):881-886. [14] 陈禹彤, 陈华民, 余超, 等. 水稻miR169o及其靶基因OsNF-YAs对缺水胁迫的早期表达模式[J]. 生物技术通报, 2015, 31(8):76-81. [15] Yu C, Chen YT, Cao YQ, et al.Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice[J]. Plant and Cell Physiology, 2018, 59(6):1234-1247. [16] 余超. 水稻对白叶枯病菌侵染和低氮胁迫反应的共调控因子鉴定[D]. 北京:中国农业科学院, 2014. [17] Chen SB, Tao LZ, Zeng LR, et al.A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice[J]. Molecular Plant Pathology, 2006, 7(5):417-427. [18] Chen HM, Zou Y, Shang YL, et al.Firefly luciferase complementation imaging assay for protein-protein interactions in plants[J]. Plant Physiology, 2008, 146(2):368-376. [19] Schwab R, Palatnik JF, Riester M, et al.Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4):517-527. [20] Li JF, Chung HS, Niu YJ, et al.Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants[J]. Plant Cell, 2013, 25(5):1507-1522. [21] Martinho C, Confraria A, Elias CA, et al.Dissection of miRNA pathways using Arabidopsis Mesophyll protoplasts[J]. Molecular Plant, 2015, 8(2):261-275. |