Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (1): 101-109.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1045
Previous Articles Next Articles
YANG Li-juan, LI Shi-fang, LU Mei-guang
Received:
2019-10-29
Online:
2020-01-26
Published:
2020-01-08
YANG Li-juan, LI Shi-fang, LU Mei-guang. miRNA-mediated Regulation Involved in Plant Pathogen[J]. Biotechnology Bulletin, 2020, 36(1): 101-109.
[1] 张西玉. miRNA:一种新的基因调控元件[J]. 乐山师范学院学报, 2006(12):51-53. [2] 许振华, 谢传晓. 植物microRNA与逆境响应研究进展[J]. 遗传, 2010, 32(10):1018-1030. [3] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Res, 2019, 47:155-162. [4] 伍林涛, 阮颖, 彭琦, 等. miRNA研究进展[J]. 作物研究, 2006(5):572-576. [5] 武亮, 戚益军. 植物小分子RNA研究进展[J]. 生命科学, 2010, 22(7):682-687. [6] 史磊, 郭艳兵, 申远. miRNA调控药用植物生长发育和次生代谢[J]. 中国生物化学与分子生物学报, 2019, 35(4):361-370. [7] 杨珊珊, 陈冠良, 姚建春. miRNA在植物抗逆方面的研究进展[J]. 种子科技, 2019, 37(4):154. [8] Palatnik JF, Wollmann H, Schommer C, et al.Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Developmental Cell, 2007, 13(1):115-125. [9] Achard P, Herr A, Baulcombe DC, et al.Modulation of floral devel-opment by a gibberellin-regulated microRNA[J]. Development, 2004, 131(14):3357-3365. [10] Zhang B.MicroRNA:a new target for improving plant tolerance to abiotic stress[J]. Journal of Experimental Botany, 2015, 66(7):1749-1761. [11] Tang J, Chu C.MicroRNAs in crop improvement:fine-tuners for complex traits[J]. Nat Plants, 2017, 3:17077. [12] 徐涛, 张富春. 植物miRNA抗胁迫机理研究进展[J]. 生物技术通报, 2008(5):5-9. [13] 孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨:哈尔滨工业大学, 2017. [14] 谷彩红, 陈家红, 张荃. miRNA参与植物耐逆性调控的研究进展[J]. 安徽农业科学, 2017, 45(34):148-151. [15] 江曾明, 何娟, 莫蓓莘, 等. 植物miRNA参与调控作物农艺性状的研究进展[J]. 生物化学与生物物理进展, 2019, 46(3):221-237. [16] 曾幼玲, 杨瑞瑞. 植物miRNA的生物学特性及在环境胁迫中的作用[J]. 中国农业科学, 2016, 49(19):3671-3682. [17] Lu XY, Huang XL.Plant miRNAs and abiotic stress responses[J]. Biochemical and Biophysical Research Communications, 2008, 368(3):458-462. [18] Chendrimada TP, Finn KJ, Ji XJ, et al.MicroRNA silencing through RISC recruitment of eIF6[J]. Nature, 2007, 447(7146):823-828. [19] Kumar R.Role of micro RNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry and Biotechnology, 2014, 174(1):93-115. [20] 陈思, 陈薇, 庞基良. miRNAs调控植物生长发育的研究进展[J]. 北方园艺, 2016(5):200-206. [21] Balyan S, Kumar M, Mutum RD, et al.Identification of miRNA mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22[J]. Scientific Reports, 2017, 7(1):15446-15450. [22] Yang C, Li D, Mao D, et al.Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice(Oryza sativa L.)[J]. Plant, Cell&Environment, 2013, 36(12):2207-2218. [23] Chen L, LuanY, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Reports, 2015, 34(12):2013-2025. [24] Li F, Pignatta D, Bendix C, et al.MicroRNA regulation of plant innate immune receptors[J]. Proceedings of the National Academy Sciences of the United States of America, 2012, 109(5):1790-1795. [25] Mica E, Piccolo V, Delledonne M, et al.High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera[J]. BMC Genomics, 2009, 10:558. [26] Zhang Y, Xia R, Kuang H, et al.The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them[J]. Molecular biology and evolution, 2016, 33(10):2692-2705. [27] Lu S, Sun Y, Amerson H, et al.MicroRNAs in Loblolly pine(Pinustaeda L.)and their association with fusiform rust gall development[J]. The Plant Journal, 2007, 51(6):1077-1098. [28] Zhao JP, Jiang XL, Zhang BY, et al.Involvement of micro RNA -mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa[J]. PLoS One, 2012, 7(9):44-68. [29] Luo M, Gao, Peng H, et al.MiR393-targeted TIR1-like(F-box)gene in response to inoculation to R. Solani in Zea mays[J]. Acta Physio-logiae Plantarum, 2014, 36(5):1283-1291. [30] 刘震. 与玉米弯孢叶斑病抗性相关的miRNA筛选与鉴定[D]. 大庆:黑龙江八一农垦大学, 2018. [31] 卢远根. 水稻中与水稻一稻瘟病菌互作相关的 microRNA初步研究[D]. 雅安:四川农业大学, 2014. [32] Navarro L, Dunoyer P, Jay F, et al.Aplant mi RNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science Signal-ing, 2006, 312(5772):436-439. [33] Ehya F, Monavarfeshani A, Fard EM, et al.Phytoplasmares-ponsive microRNAs modulate hormonal, nutritional, and stress signaling pathways in mexican lime trees[J]. PLoS One, 2013, 8(6):66-72. [34] Li Y, Zhang Q, Zhang J, et al.Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immu-nity[J]. Plant Physiology, 2010, 152(4):2222-2231. [35] Dunoyer P, Himber C, Voinnet O.Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections[J]. Nature Genetics, 2008, 38(2):258-263. [36] Bazzini AA, Hopp HE, Beachy RN, et al.Infection and co-accumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development[J]. Proceedings of the National Academy Sciences of the United States of America 2007, 104(29):12157-12162. [37] Wu JG, Yang RX, Yang ZR, et al.ROS accumulation and antiviral defence control by microRNA528 in rice[J]. Nature Plants, 2017, 3(1):16203. [38] Kasschau KD, Xie Z, Allen E, et al.P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction[J]. Developmental Cell, 2003, 4:205-217. [39] Qu J, Ye J, Fang RX.Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 2007, 81(12):6690-6699. [40] Niu QW, Lin SS, Reyes JL, et al.Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J]. Nature Biotechnology, 2006, 24(11):1420-1428. [41] Lin SS, Wu HW, Elena SF, et al.Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing[J]. PLoS Pathogens, 2009, 5(2):e1000312. [42] 奥云朝伦. MicroRNA调控下的RNAi途径关键基因及NBS-LRR类抗病基因在SMV侵染大豆中的作用研究[D]. 呼和浩特:内蒙古大学, 2016. [43] Garcia-Guzman G, Heil M.Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases[J]. New Phytologist, 2014, 201(4):1106-1120. [44] 李华, 郭明浩. 葡萄霜霉病预测模型及预警技术研究进展[J]. 中国农学通报, 2006, 21(10):313-316. [45] 蔡斌, 李成慧, 彭日荷, 等. 葡萄microRNA的计算识别[J]. 华北农学报, 2008, 23(S2):213-216. [46] 黄飞飞. 苹果microRNA的检测鉴定及前体结构预测[D]. 沈阳:沈阳农业大学, 2010. [47] Gao ZH, Luo XY, Shi T, et al.Identification and validation of potential conserved microRNAs and their targets in peach(Prunus persica)[J]. Molecules and Cells, 2012, 34(3):239-249. [48] 张秋雷, 陈秋菊, 张懿, 等. '鸭梨' miRNA及其靶基因分析[J]. 北京:中国科技论文在线, 2017-08-10. [49] Barakat A, Sriram A, Park J, et al.Genome wide identification of chilling responsive microRNAs in Prunus persica[J]. BMC Genomics, 2012, 13:481. [50] Eldem V, Çelikkol AA, Ozhuner E, et al.Genome wide identification of miRNAs responsive to drought in peach(Prunus persica)by high-throughput deep sequencing[J]. PLoS One, 2012, 7(12):e50298. [51] Pekmezci AK, Karakulah G, Unver T.Discovery of drought-responsive transposable element-related peach miRNAs[J]. Bio Rxiv, 2017, 5:143115. [52] 冷翔鹏. 葡萄应答铜胁迫的分子机理研究[D]. 南京:南京农业大学, 2015. [53] 韩丽娟. 华东葡萄‘白河-35-1’抗白粉病相关miRNA的鉴定[D]. 杨凌:西北农林科技大学, 2015. [54] 都贝贝. 苹果轮纹病抗性相关miRNA的筛选[D]. 南京:南京农业大学, 2013. [55] 宋顺, 黄东梅, 王安邦, 等. 作物抗逆相关miRNA的研究进展[J]. 分子植物育种, 2018, 16(7):2180-2186. [56] 刘娟. 热处理对沙梨离体植株体内microRNAs和来源于ASGV的vsiRNAs的影响[D]. 武汉:华中农业大学, 2015. [57] Zhang Y, Yu M, Yu H, et al.Computational identification of micro RNAs in peach expressed sequence tags and validation of their precise sequences by mi R-RACE[J]. Molecular Biology Reports, 2012, 39(2):1975-1987. [58] Jaillon O, Aury JM, Noel B, et al.The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. [59] 张颖, 樊秀彩, 姜建福, 等. 基于microRNA测序分析miRNA在刺葡萄抗白腐病中的作用[J]. 果树学报, 2019, 36(2):143-152. [60] 方辉, 曲俊杰, 孙嘉曼, 等. 葡萄miR169及其靶基因的生物信息学分析[J]. 南方农业学报, 2017, 48(8):1329-1334. [61] Ma C, Lu Y, Bai S, et al.Cloning and characterization of miRNAs and their targets, including a novel miRNA-targeted NBS-LRR protein class gene in apple(Golden Delicious)[J]. Molecular Plant, 2014, 7(1):218-230. [62] Bartel DP.MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233. [63] Chen XM.Small RNAs and their roles in plant development[J]. Annu Rev Cell Dev Biol, 2009, 25:21-44. [64] 贾万忠, 李志, 伦照荣. 病毒微小RNA的发现及其功能[J]. 科学通报, 2007(23):2705-2714. [65] 伍国强, 刘海龙, 刘左军. RNAi技术及其在植物中的应用[J]. 分子植物育种, 2018, 16(19):6299-6307. [66] Schwab R, Ossowski S, Riester M, et al.Highly specific gene silencing by artificial microRNAs in Arabidopsis[J]. Plant Cell, 2006, 18(5):1121-33. [67] Sunkar R, Li YF, Jagadeeswaran G, et al.Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4):196-203. [68] Wu C, Li XY, Guo S, et al.Analyses of RNA-Seq and sRNA-Seq data reveal a complex network of anti-viral defense in TCV-infected Arabidopsis thaliana[J]. Scientific Reports, 2016, 6:36007. [69] Zhou Y, Xu ZN, Duan CX, et al.Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize[J]. Journal of Experimental Botany, 2016, 67(15):4593-4609. [70] Xu DL, Mou G, Wang K, et al.MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice[J]. Virus Research, 2014, 190:60-68. [71] Naqvi AR, Haq QM, Mukherjee SK, et al.MicroRNA profiling of tomato leaf curl new delhi virus(tolcndv)infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease[J]. Virology Journal, 2010, 7:281. [72] Shivaprasad PV, Chen HM, Patel K, et al.A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs[J]. The Plant Cell, 2012, 24(3):859-874. [73] Fahim M, Millar AA, Wood CC, et al.Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat[J]. Plant Biotechnology Journal, 2012, 10(2):150-163. [74] Snyman MC, Solofoharivelo MC, Souza-Richards R, et al.The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. ‘Chardonnay’[J]. PLoS One, 2017, 12(8):e0182629. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[3] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[4] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[5] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[6] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[7] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[8] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[9] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[10] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[11] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[12] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[13] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[14] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[15] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 637
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 402
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||