Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (8): 69-78.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0033
Previous Articles Next Articles
WU Yu, WANG Jin-hua, ZHAO Xiao
Received:
2020-01-07
Online:
2020-08-26
Published:
2020-08-27
WU Yu, WANG Jin-hua, ZHAO Xiao. Enhanced Furfural Tolerance in Saccharomyces cerevisiae by the Overexpression of GLN1 Gene[J]. Biotechnology Bulletin, 2020, 36(8): 69-78.
[1] 范兆军. 果酒酵母的研究[J]. 农产品加工, 2015(1):69-70. Fan ZJ.Research on fruit wine yeast[J]. Farm Products Processing, 2015(1):69-70. [2] 赵心清, 张明明, 徐桂红, 等. 酿酒酵母乙酸耐性分子机制的功能基因组进展[J]. 生物工程学报, 2014, 30(3):368-380. Zhao XQ, Zhang MM, Xu GH, et al.Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2014, 30(3):368-380. [3] Modig T, Lidén G, Taherzadeh MJ.Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase[J]. Biochemical Journal, 2002, 363(3):769-776. [4] 邹姝姝, 全学军, 周跃钢. 酒用耐酸酵母的自然选育[J]. 重庆理工大学学报, 2003, 17(1):22-24. Zou SS, Quan XJ, Zhou YG.Natural selection of acid-resistant yeast[J]. Journal of Chongqing Institute of Technology, 2003, 17(1):22-24. [5] 张译之, 苟敏, 汤岳琴. 紫外诱变驯化提高酿酒酵母木糖发酵的抑制物耐受性[J]. 生物技术通报, 2017, 33(9):191-199. Zhang YZ, Gou M, Tang YQ.Improvement of inhibitor tolerance of a Xylose-fermenting industrial Saccharomyces cerevisiae strain through UV mutation and acclimation[J]. Biotechnology Bulletin, 2017, 33(9):191-199. [6] 林贝, 李健秀, 刘雪凌. 紫外诱变结合驯化提高酿酒酵母对抑制物耐受性[J]. 生物技术, 2018, 28(1):85-91. Lin B, Li JX, Liu XL.Improvement of inhibitor tolerance of Saccharomyces cerevisiae through UV mutation and adaption[J]. Biotechnology, 2018, 28(1):85-91. [7] 方佩佩, 王世清, 李静, 等. 耐酒精酿酒酵母大气压等离子体诱变条件的建立及选育[J]. 酿酒科技, 2016(9):31-37. Fang PP, Wang SQ, Li J, et al.Establishment of the conditions of atmospheric plasma-inducing mutation of S.cerevisiae and breeding of an ethanol-tolerant strain[J]. Liquor-Making Science Technology, 2016(9):31-37. [8] 吴帅, 陈叶福, 沈楠, 等. 高耐性酿酒酵母的杂交育种[J]. 酿酒科技, 2006(10):20-22. Wu S, Chen YF, Shen N, et al.Construction of S.cerevisiae with good osmo-tolerance and high ethanol-production characteristic[J]. Liquor-Making Science Technology, 2006(10):20-22. [9] 苟敏, 杨白雪, 汤岳琴, 等. 利用原生质体融合技术构建耐酸絮凝性产乙醇酿酒酵母[J]. 生物技术通报, 2016, 32(11):115-123. Gou M, Yang BX, Tang YQ, et al.Construction of acid-tolerant and flocculating Saccharomyces cerevisiae strain for ethanol production by protoplast fusion[J]. Biotechnology Bulletin, 2016, 32(11):115-123. [10] Wan C, Zhang MM, Fang Q, et al.The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc[J]. Metallomics, 2015, 7(2):322-332. [11] 何艳艳, 孜力汗, 张宝会, 等. 过表达长链鞘氨醇激酶基因LCB4提高酿酒酵母抑制物耐受性[J]. 生物工程学报, 2018, 34(6):906-915. He YY, Zi LH, Zhang BH, er al. Improvement of inhibitors tolerance of Saccharomy cescerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4[J]. Chinese Journal of Biotechnology, 2018, 34(6):906-915. [12] 相瑞娟. 木质纤维素水解液抑制物高抗性酵母的选育[D]. 大连:大连理工大学, 2016. Xiang RJ.Breeding of Yeast with improved resistance to lignocellulosic inhibitory compounds[D]. Dalian:Dalian University of Technology, 2016. [13] 张克俞, 张明明, 赵心清, 等. 关键基因过表达提高酿酒酵母抑制剂耐受性及乙醇发酵性能[J]. 应用与环境生物学报, 2018, 24(3):541-546. Zhang FY, Zhang MM, Zhao XQ, et al.Improvement of inhibitor stress tolerance and ethanol fermentation of Saccharomyces cerevisiae by overexpression of novel key genes[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3):541-546. [14] Chen YY, Sheng JY, Jiang T, et al.Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9(9):1-18. [15] Kim D, Hahn JS.Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress[J]. Applied and Environmental Microbiology, 2013, 79(16):5069-5077. [16] 陈洪奇. 硫酸锌提高酿酒酵母乙酸耐性的机理及关键基因功能分析[D]. 大连:大连理工大学, 2017. Chen HQ.Exploration of the mechanisms of improved acetic acid tolerance of Saccharomyces cerevisiae by zinc sulfate addition and analysis of key functional genes[D]. Dalian:Dalian University of Technology, 2017. [17] 李骆冰, 王永红, 庄英萍, 等. 乙醇发酵中酿酒酵母辅酶NAD+及NADH测定方法[J]. 食品与生物技术学报, 2011, 30(2):287-294. Li LB, Wang YH, Zhuang YP, et al.Determination of coenzyme NAD+ and NADH of Saccharomy cescerevisiae cells in ethanol production[J]. Journal of Food Science and Biotechnology, 2011, 30(2):287-294. [18] 韩立强, 郭豫杰, 李卫华, 等. 高效液相色谱法检测乳制品中谷氨酰胺的研究[J]. 乳业科学与技术, 2009, 32(6):263-264. Han LQ, Guo YJ, Li WH.Analysis of glutamine content in milk by HPLC[J]. Journal of Dairy Science and Technology, 2009, 32(6):263-264. [19] Li TK.The glutathione and thiol content of mammalian spermatozoa and seminal plasma[J]. Biology of Reproduction, 1975, 12(5):641-646. [20] Shi X, Zou Y, Chen Y, et al.Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharomyces cerevisiae in aerobic fermentation[J]. Frontiers in Microbiology, 2016, 7:1427. [21] Rowe LA, Degtyareva N, Doetsch PW.DNA damage-induced reactive oxygen species(ROS)stress response in Saccharomyces cerevisiae[J]. Free Radical Biology and Medicine, 2008, 45(8):1167-1177. [22] 赵蒙蒙, 姜曼, 周祚万. 几种农作物秸秆的成分分析[J]. 材料导报2011, 25(16):122-125. Zhao MM, Jiang M, Zhou ZW.The components analysis of several kinds of agricultural residues[J]. Materials Reports, 2011, 25(16):122-125. [23] 黄峰, 王永泽, 周胜德, 等. 水稻脆性秸秆发酵产纤维乙醇的研究[J]. 可再生能源, 2014, 32(2):211-215. Huang F, Wang YZ, Zhou SD, et al.Study on cellulosic ethanol fermentation of brittle rice straw[J]. Renewable Energy Resources, 2014, 32(2):211-215. [24] 丁小云, 顾健健, 王永泽, 等. 产D-乳酸重组大肠杆菌ptsG基因的敲除及其混合糖同步发酵[J]. 生物技术通报, 2015, 31(12):221-226. Ding XY, Gu JJ, Wang YZ, et al.The knockout of gene ptsG of recombinant Escherichia coli producing D-lactic acid and the simultaneous fermentation of mixed sugars[J]. Biotechnology Bulletin, 2015, 31(12):221-226. [25] Zhang YY, Song Y, Hu XS, et al. Determination of 5-hydroxymeth-ylfurfural and furfural in soft beverages by HPLC[J]. Advanced Materials Research, 2012, 550-553:1959-1966. [26] 方青. 过表达关键酶基因对酿酒酵母胁迫耐性的影响[D]. 大连:大连理工大学, 2016. Fang Q.Effect of Overexpression of key enzyme genes on stress tolerance of Saccharomyces cerevisiae[D]. Dalian:Dalian University of Technology, 2016. [27] Wang X, Bai X, Chen DF, et al.Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors[J]. Biotechnology for Biofuels, 2015, 8:142. |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[4] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[5] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[6] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[7] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[8] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[9] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[10] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[11] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[12] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[13] | REN Hai-wei, SUN Yi-fan, REN Yu-wei, GUO Xiao-peng, PAN Li-chao, ZHANG Bing-yun, LI Jin-ping. Research Progress of Silage Additives Based on Bibliometrics [J]. Biotechnology Bulletin, 2022, 38(8): 261-274. |
[14] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[15] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||