Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (9): 31-41.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0994
Previous Articles Next Articles
WANG Wei-xiong1, SHEN Bo1, JIA Hong-bai1, QIAO Jun-qing2, NIU Ben1
Received:
2020-08-10
Online:
2020-09-26
Published:
2020-09-30
WANG Wei-xiong, SHEN Bo, JIA Hong-bai, QIAO Jun-qing, NIU Ben. Application of Rhizospheric Biocontrol Consortia and the Potential Mechanisms of Their Enhancing Efficacy on Disease-suppressive Effect[J]. Biotechnology Bulletin, 2020, 36(9): 31-41.
[1] 联合国粮食及农业组织. 粮农组织启动联合国“2020国际植物健康年”.http://www. fao. org/news/story/zh/item/12536202/icode/. Food and Agriculture Organization of the United Nations. FAO launches2020 as the UN’s International Year of Plant Health.http://www. fao. org/news/story/zh/item/12536202/icode/. [2] Velivelli SLS, Vos PD, Kromann P, et al.Biological control agents:from field to market, problems, and challenges[J]. Trends in Biotechnology, 2014, 32(10):493-496. [3] Rahman SFSA, Singh E, Pieterse CMJ, et al.Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Sci, 2018, 267:102-111. [4] Fira D, Dimkic I, Beric T, et al.Biological control of plant pathogens by Bacillus species[J]. J Biotechnol, 2018, 285:44-55. [5] Alvarez B, Biosca EG.Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture[J]. Front Plant Sci, 2017, 8:1218. [6] Busby PE, Soman C, Wagner MR, et al.Research priorities for harnessing plant microbiomes in sustainable agriculture[J]. PLoS Biol, 2017, 15(3):e2001793. [7] Singh RL, Mondal S.Biotechnology for sustainable agriculture[M]. Sawston Cambridge:Woodhead Publishing, 2018. [8] Carzorla FM, Mercado-Blanco J.Biological control of tree and woody plant diseases:an impossible task?[J]. BioControl, 2016, 61:233-242. [9] Xu XM, Jeffries P, Pautasso M, et al.Combined use of biocontrol agents to manage plant diseases in theory and practice[J]. Phytopathology, 2011, 101(9):1024-1031. [10] Mazzola M, Freilich S.Prospects for biological soilborne disease control:application of indigenous versus synthetic microbiomes[J]. Phytopathology, 2017, 107(3):256-263. [11] Sarma BK, Yadav SK, Singh S, et al.Microbial consortium-mediated plant defense against phytopathogens:readdressing for enhancing efficacy[J]. Soil Biol Biochem, 2015, 87:25-33. [12] Lugtenberg B, Kamilova F.Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63:541-556. [13] Qu Q, Zhang Z, Peijnenburg WJGM, et al.Rhizosphere microbiome assembly and its impact on plant growth[J]. J Agric Food Chem, 2020, 68(18):5024-5038. [14] Garcia J, Kao-Kniffin J.Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Front Microbiol, 2018, 9:1516. [15] Compant S, Samad A, Faist H, et al.A review on the plant microbiome:Ecology, functions, and emerging trends in microbial application[J]. J Adv Res, 2019, 19:29-37. [16] Vorholt JA, Vogel C, Carlstrom CI, et al.Establishing causality:opportunities of synthetic communities for plant microbiome research[J]. Cell Host Microbe, 2017, 22(2):142-155. [17] Woo SL, Pepe O.Microbial consortia:promising probiotics as plant biostimulants for sustainable agriculture[J]. Front Plant Sci, 2018, 9:1801. [18] Pierson EA, Weller DM.Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat[J]. Phytopathology, 1994, 84:940-947. [19] Pliego C, de Weert S, Lamers G, et al. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae[J]. Environ Microbiol, 2008, 10(12):3295-3304. [20] Thomloudi EE, Tsalgatidou PC, Douka D, et al.Multistrain versus single-strain plant growth promoting microbial inoculants - The compatibility issue[J]. Hell Plant Prot J, 2019, 12(2):61-77. [21] Lutz MP, Wenger S, Maurhofer M, et al.Signaling between bacterial and fungal biocontrol agents in a strain mixture[J]. FEMS Microbiol Ecol, 2004, 48(3):447-455. [22] Hassani MA, Duran P, Hacquard S.Microbial interactions within the plant holobiont[J]. Microbiome, 2018, 6(1):58. [23] McKellar ME, Nelson EB. Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities[J]. Appl Environ Microbiol, 2003, 69(1):452-460. [24] Hu J, Wei Z, Friman VP, et al.Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-16. [25] Wei Z, Yang T, Friman VP, et al.Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nat Commun, 2015, 6:8413. [26] Thakkar A, Saraf M.Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine maxL[J]. Arch Phytopathol Plant Prot, 2014, 48(6):459-474. [27] Santhanam R, Menezes RC, Grabe V, et al.A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease[J]. Mol Ecol, 2019, 28(5):1154-1169. [28] Solanki MK, Yandigeri MS, Kumar S, et al.Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato[J]. Antonie Van Leeuwenhoek, 2019, 112(11):1633-1644. [29] Shanmugam V, Kanoujia N.Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture[J]. Biol Control, 2011, 57(2):85-93. [30] Georg S. Raupach JK.Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology, 1998, 88(11):1159-1164. [31] Zhang LN, Wang DC, et al.Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota[J]. Front Microbiol, 2019, 10:1668. [32] Carrion VJ, Perez-Jaramillo J, Cordovez V, et al.Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465):606-612. [33] Niu B, Paulson JN, Zheng X, et al.Simplified and representative bacterial community of maize roots[J]. Proc Natl Acad Sci USA, 2017, 114(12):E2450-E2459. [34] Bardas GA, Lagopodi AL, Kadoglidou K, et al.Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365[J]. Biol Control, 2009, 49(2):139-145. [35] Morris BE, Henneberger R, Huber H, et al.Microbial syntrophy:interaction for the common good[J]. FEMS Microbiol Rev, 2013, 37(3):384-406. [36] Mee MT, Collins JJ, Church GM, et al.Syntrophic exchange in synthetic microbial communities[J]. Proc Natl Acad Sci USA, 2014, 111(20):E2149-E2156. [37] Bashan Y, Holguin G.Azospirillum-plant relationships:environmental and physiological advances[J]. Can J Microbiol, 1997, 43(2):103-121. [38] Bashan Y.Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnol Adv, 1998, 16(4):729-770. [39] Bais HP, Weir TL, Perry LG, et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu Rev Plant Biol, 2006, 57:233-266. [40] Huang XF, Chaparro JM, Reardon KF, et al.Rhizosphere interactions:root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4):267-275. [41] Peterson SB, Dunn AK, Klimowicz AK, et al.Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group[J]. Appl Environ Microbiol, 2006, 72(8):5421-5427. [42] Vlamakis H, Chai Y, Beauregard P, et al.Sticking together:building a biofilm the Bacillus subtilis way[J]. Nat Rev Microbiol, 2013, 11(3):157-168. [43] Fan B, Chen XH, Budiharjo A, et al.Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein[J]. J Biotechnol, 2011, 151(4):303-311. [44] Beauregard PB, Chai Y, Vlamakis H, et al.Bacillus subtilis biofilm induction by plant polysaccharides[J]. Proc Natl Acad Sci USA, 2013, 110(17):E1621-1630. [45] Berendsen RL, Vismans G, Yu K, et al.Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12(6):1496-1507. [46] Burmolle M, Webb JS, et al.Enhanced biofilm formation and incre-ased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms[J]. Appl Environ Microbiol, 2006, 72(6):3916-3923. [47] Harshey RM.Bacterial motility on a surface:many ways to a common goal[J]. Annu Rev Microbiol, 2003, 57:249-273. [48] Allard-Massicotte R, Tessier L, Lecuyer F, et al.Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio, 2016, 7(6):e01664-16. [49] Warmink JA, Nazir R, Corten B, et al.Hitchhikers on the fungal highway:The helper effect for bacterial migration via fungal hyphae[J]. Soil Biol Biochem, 2011, 43(4):760-765. [50] Kohlmeier S, Smits THM, Ford RM, et al.Taking the fungal highway:mobilization of pollutant-degrading bacteria by fungi[J]. Environ Sci Technol, 2005, 39(12):4640-4646. [51] Wick L, Remer R, Wurz B, et al.Effect of fungal hyphae on the access of bacteria to phenanthrene in soil[J]. Environ Sci Technol, 2007, 41:500-505. [52] Zhang W, Li XG, Sun K, et al.Mycelial network-mediated rhizobial dispersal enhances legume nodulation[J]. ISME J, 2020, 14(4):1015-1029. [53] de Novais CB, Sbrana C, da Conceicao Jesus E, et al. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium[J]. Mycorrhiza, 2020, 30:389-396. [54] Ingham CJ, Kalisman O, Finkelshtein A, et al.Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex[J]. Proc Natl Acad Sci USA, 2011, 108(49):19731-19736. [55] Finkelshtein A, Roth D, Ben Jacob E, et al.Bacterial swarms recruit cargo bacteria to pave the way in toxic environments[J]. mBio, 2015, 6(3):e00074-15. [56] Venieraki A, Tsalgatidou PC, et al.Swarming motility in plant-associated bacteria[J]. Hell Plant Prot J, 2016, 9(1):16-27. [57] Kannan V, Sureendar R.Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion[J]. J Basic Microbiol, 2009, 49(2):158-164. [58] Irikiin Y, Nishiyama M, Otsuka S, et al.Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system[J]. Applied Soil Ecology, 2006, 34(1):27-32. [59] Gu S, Wei Z, Shao Z, et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8):1002-1010. [60] Traxler MF, Kolter R.Natural products in soil microbe interactions and evolution[J]. Nat Prod Rep, 2015, 32(7):956-970. [61] Traxler MF, Watrous JD, Alexandrov T, et al.Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome[J]. mBio, 2013, 4(4):e00459-13. [62] Chen XH, Koumoutsi A, Scholz R, et al.Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nat Biotechnol, 2007, 25(9):1007-1014. [63] Haas D, Keel C.Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease[J]. Annu Rev Phytopathol, 2003, 41:117-153. [64] Ghishalberti EL, Sivasithamparam, K.Antifungal antibiotics produced by Trichoderma spp.[J]. Soil Biol Biochem, 1991, 23(11):1011-1020. [65] Pishchany G, Mevers E, et al.Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen[J]. Proc Natl Acad Sci USA, 2018, 115(40):10124-10129. [66] Nutzmann HW, Reyes-Dominguez Y, Scherlach K, et al.Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation[J]. Proc Natl Acad Sci USA, 2011, 108(34):14282-14287. [67] Brakhage AA.Regulation of fungal secondary metabolism[J]. Nat Rev Microbiol, 2013, 11(1):21-32. [68] Ola AR, Thomy D, Lai D, et al.Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis[J]. J Nat Prod, 2013, 76(11):2094-2099. [69] Kloepper JW, Tuzun S, Kuć JA.Proposed definitions related to induced disease resistance[J]. Biocontrol Sci Tech, 1992, 2(4):349-351. [70] Jain A, Singh S, Kumar Sarma B, et al.Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum[J]. J Appl Microbiol, 2012, 112(3):537-550. [71] Alizadeh H, Behboudi K, Ahmadzadeh M, et al.Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14[J]. Biol Control, 2013, 65(1):14-23. [72] Liu K, McInroy JA, Hu CH, et al. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens[J]. Plant Dis, 2018, 102(1):67-72. [73] Nicholas A. Lyons RK.Bacillus subtilis protects public goods by extending kin discrimination to closely related species[J]. mBio, 2017, 8(4):e00723-17. [74] Liu YX, Qin Y, Bai Y.Reductionist synthetic community approaches in root microbiome research[J]. Curr Opin Microbiol, 2019, 49:97-102. [75] Haas D, Defago G.Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nat Rev Microbiol, 2005, 3(4):307-319. [76] Jain A, Singh A, Singh S, et al.Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium[J]. J Basic Microbiol, 2015, 54:1-12. [77] Jetiyanon K, Kloepper JW.Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases[J]. Biol Control, 2002, 24(3):285-291. [78] Srivastava R, Khalid A, Singh US, et al.Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt[J]. Biological Control. 2010, 53(1):24-31. [79] Zhou DM, Feng H, Schuelke T, et al.Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection[J]. Microb Ecol, 2019, 78(2):470-481. [80] Domenech J, Reddy MS, et al.Combined application of the biolo- gical product LS213 with Bacillus, Pseudomonas or Chryseobacte-rium for growth promotion and biological control of soil-borne dise-ases in pepper and tomato[J]. BioControl, 2006, 51:245-258. [81] Chemeltorit PP, Mutaqin KH, Widodo W.Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86:a synergistic chili pepper seed treatment for Phytophthora capsici infested soil[J]. Eur J Plant Pathol, 2017, 147:157-166. [82] Raupach GS, Kloepper JW.Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology, 1998, 88(11):1159-1164. [83] Yang W, Zheng L, Liu HX, et al.Evaluation of the effectiveness of a consortium of three plant-growth promoting rhizobacteria for biocontrol of cotton Verticillium wilt[J]. Biocontrol Sci Technol, 2014, 24(5):489-502. [84] Thangavelu R, Gopi M.Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine[J]. Biocontrol Sci Technol, 2015, 25(10):1147-1164. |
[1] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[2] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[3] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[4] | LI Si-si, ZHANG Bo-yuan, FU Yun-hui, ZHOU Jia, QU Jian-hang. Condition Optimization of an Efficient Phosphate-dissolving Bacterial Strain and Its Phosphate-dissolving Characteristics [J]. Biotechnology Bulletin, 2022, 38(12): 274-286. |
[5] | WANG Jing, DAI Dong, WU Shu-geng, ZHANG Hai-jun, QI Guang-hai. Advances in Successional Development and Early Establishment of the Chicken Intestinal Microbiota [J]. Biotechnology Bulletin, 2020, 36(2): 1-8. |
[6] | WANG Pan-pan, YANG Ye, LIU Di-qiu, CUI Xiu-ming, LIU Yuan. Application of Metagenomics in Plant Diseases Research [J]. Biotechnology Bulletin, 2020, 36(12): 146-154. |
[7] | CHEN Nan, YU Fei, HE Yan-liu, BU Ning. Labeling and Tracing of Green Fluorescent Protein in Fungal Endophyte with Growth-promoting Activity to Rice Seedlings [J]. Biotechnology Bulletin, 2017, 33(3): 100-105. |
[8] | SUN Zhen, ZHENG Liang, QIU Hao-bin. Research Advances on Colonization of Plant Growth-promoting Rhizobacteria [J]. Biotechnology Bulletin, 2017, 33(2): 8-15. |
[9] | LIU Xiao-yu, MA Yu-chao. Green Fluorescent Protein Marker of Biocontrol Streptomyces SSD49 and Its Colonization on the Populus tomentosa Somaclone [J]. Biotechnology Bulletin, 2016, 32(9): 197-202. |
[10] | WANG Jun-qiang, WANG Jing-jing, WANG Qi, MA Gui-zhen, BAO Zeng-hai, WANG Shu-fang, ZHOU Xiang-hong. Colonization of Double-resistance Strain of Marine Bacterium L1-9 and Its Biocontrol Effect on Fusarium Wilt of Cucumber [J]. Biotechnology Bulletin, 2016, 32(6): 193-198. |
[11] | MA Dan-dan, DENG Yu-qing, ZHOU Yan, ZHOU Chang-yong, LI Zhong-an. Application of Electron Microscopy Technology in the Research of Plant Diseases [J]. Biotechnology Bulletin, 2016, 32(3): 38-43. |
[12] | Wang Ruiqin, Zhou Guoying, Liu Junang, Li Dongqin, Meng Qingmin. Colonization of Bacillus subtilis Y13 in Camellia oleifera Leaves and Its Effect on Native Bacteria [J]. Biotechnology Bulletin, 2014, 0(6): 162-167. |
[13] | Ran Ganqiao, Wang Nan, Dai Jiakun, Zhao Wenjuan, Ren Ping, Qin Tao. Colonization of Bacillus subtilis BS24 on the Apple Leaf Surface and Their Effects on the Leaf Microbial Flora [J]. Biotechnology Bulletin, 2013, 0(10): 131-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||