[1] Lowy FD.Staphylococcus aureus infections[J]. New England Journal of Medicine, 1998, 339(8):520-532. [2] Smyth DS, Kafer JM, Wasserman GA, et al.Nasal carriage as a source of Staphylococcus aureus bacteremia[J]. New England Journal of Medicine, 2001, 344(1):11-16. [3] Hou X, Wang M, Wen Y, et al.Quinone skeleton as a new class of irreversible inhibitors against Staphylococcus aureus sortase A[J]. Bioorg Med Chem Lett, 2018, 28(10):1864-1869. [4] Wardenburg JB, Patel RJ, Schneewind O.Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia[J]. Infect Immun, 2007, 75(2):1040-1044. [5] 陈福广. 分选酶A在金黄色葡萄球菌引起的乳腺炎、菌血症和肺炎致病过程中的作用[D]. 长春:吉林大学, 2014. Chen FG.Role of sorter A in the pathogenesis of mastitis, bacteremia and pneumonia caused by Staphylococcus aureus[D]. Changchun:Jilin University, 2014. [6] Cossart P, Jonquieres R.Sortase, a universal target for therapeutic agents against Gram-positive bacteria[J]. Proc Natl Acad Sci USA, 2000, 97(10):5013-5015. [7] Bowater R, Doherty AJ.Making ends meet:repairing breaks in bacterial DNA by non-homologous end-joing[J]. PLoS Genetics, 2006, 2(2):93-99. [8] Spoto M, Guan C, Fleming E, et al.A universal, genomewide guidefinder for CRISPR/Cas9 targeting in microbial genomes[J]. mSphere, 2020, 5(1):10-20. [9] Mougiakos I, Bosma EF, de Vos WM, et al. Next generation prokaryotic engineering:the CRISPR-Cas toolkit[J]. Trends in Biotechnology, 2016, 34(7):575-587. [10] Gasiunas G, Barrangou R, Horvath P, et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. PNAS, 2012, 109(39):2579-2586. [11] Xia J, Wang L, Zhu JB, et al.Expression of She-wanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering[J]. Biotechnology Letters, 2016, 38(1):117-122. [12] Hong KQ, Liu DY, Chen T, et al.Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis[J]. World Journal of Microbiology and Biotechnology, 2018, 34(10):151-155. [13] 邢述永, 路志群, 夏海洋, 等. 构建CRISPR-Cas9介导的耻垢分枝杆菌基因组高效删除系统[J]. 微生物学通报, 2018, 45(12):2738-2750. Xing SY, Lu ZQ, Xia HY, et al.CRISPR-Cas9-assisting efficient and sequential genome mutants in Mycobacterium smegmatis[J]. Microbiology China. 2018, 45(12):2738-2750. [14] Jiang W, Bikard D, Cox D, et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2016, 31(3):233-239. [15] Oh JH, Van Pijkeren JP.CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Res, 2014, 15(17):17-21. [16] Michael EP, Mark RB, et al.Harnessing heterologous and endoge-nous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium[J]. Sci Rep, 2016, 6(5):125-129. [17] Cobb RE, Wang J, Zhao HM.High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6):723-728. [18] Khanzadi MN, Khan AA.CRISPR/Cas9:Nature’s gift to prokaryotes and an auspicious tool in genome editing[J]. Journal of Bsaic Microbiology, 2019, 10(6):1002-1005. [19] Zhao C, Shu X, Sun B.Construction of a dCas9-bsaed gene knockdown system in Staphylococcus aureus[J]. Applied and Environmental Microbiology, 2017, 83(12):12-17. [20] Chen W, Zhang Y, Yeo WS, et al.Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system[J]. Journal of the American Chemical Society, 2017, 139(10):3790-3795. [21] Penewit K, Holmes EA, McLean K, et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection[J]. Mbio, 2018, 9(5):7-18. [22] 张晓静, 冯世源, 杜崇涛, 等. 金黄色葡萄球菌OatA基因敲除菌株及其回补菌株的构建[J]. 现代生物医学进展, 2015, 4(15):25-29. Zheng XJ, Feng SY, Du CT, et al.Construction of OatA mutant mutant and complementation of Staphylococcus aureus[J]. Progress in Modern Biomedicine, 2015, 4(15):25-29. [23] Horvath PM, Kavalali ET, Monteggia LM.CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons[J]. Journal of Neuroscience Methods, 2016, 278(15):57-64. [24] 郑小梅, 张晓立, 于建东, 等. CRISPR-Cas9介导的基因组编辑技术的研究进展[J]. 生物技术进展, 2015, 11(1):1-9. Zheng XM, Zhang XL, Yu JD, et al.Advance in and application of CRISPR-Cas9 technology in bacteria[J]. Current Biotechnology, 2015, 11(1):1-9. [25] Liu Y, Shi D, et al.Dracorhodin Perochlorate attenuates Staphylo-coccus aureus USA300 virulence by decreasing α-toxin expression[J]. World J Microbiol Biotechnol, 2017, 33(1):117-121. [26] Hornak JP, Anjum S, Reynoso D, et al.Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant bacteremia after monotherapy failure[J]. Ther Adv Infect Dis, 2019, 10(6):117-128. [27] Martens, Evan, Demain, et al. The antibiotic resistance crisis, with a focus on the United States[J]. The Journal of Antibiotics:An International Journal, 2017, 70(5):1030-1039. [28] 张奇文, 凌晨, 吴学林, 等. 单增李斯特菌srtA基因缺失株的构建及srtA基因对其毒力的影响研究[J]. 中国动物传染病学报, 2019, 27(4):23-31. Zhang QW, Ling C, Wu XL, et al.Construction and virulence evaluation of the srtA gene deletion strain of Listeria monocytogenes[J]. Chinese Journal of Animal Infectious Diseases, 2019, 27(4):23-31. [29] 张静玲, 李国明, 邱景富. 金黄色葡萄球菌生物膜形成能力及其耐甲氧西林相关性[J]. 中国消毒学杂志, 2018. 35(1):14-16. Zhang JL, Li GM, Qiu JF.Research on relationship between methicillin resistance of Staphylococcus aureus clinical isolates and its biofilm forming ability[J]. Chinese Journal of Antisepsis, 2018. 35(1):14-16. |