Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 237-246.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0335
Previous Articles Next Articles
WANG Dan-rui1,3(), SHEN Wen-li2, WEI Zi-yan2, WANG Shang1, DENG Ye1,2,3()
Received:
2020-03-27
Online:
2020-10-26
Published:
2020-11-02
Contact:
DENG Ye
E-mail:wangdanrui18@mails.ucas.ac.cn;yedeng@rcees.ac.cn
WANG Dan-rui, SHEN Wen-li, WEI Zi-yan, WANG Shang, DENG Ye. Applications of Single-cell Sequencing Technology in Microbial Ecology[J]. Biotechnology Bulletin, 2020, 36(10): 237-246.
细胞分离技术 | 技术简介 | 优点 | 局限性 | 应用案例 |
---|---|---|---|---|
有限稀释法 | 培养液稀释至约每0.1mL含有1个菌或细胞,根据泊松分布计算 | 简单廉价 | 准确性差,不具有针对性 | 对HIV-1病毒的全长序列进行测序[ |
显微操作法 | 机械显微操作,用毛细管从各类样品中捕获单个细胞 | 对细胞进行可视性评估 | 通量极低,易对细胞造成机械损伤 | 分离并检测食物中的致病菌[ |
激光捕获显微分离技术 | 将细胞进行固定和显色处理后直接分离 | 显色标记与分离结合,可分离复杂基质中的单细胞 | 通量低,易引入杂质或导致遗传信息丢失 | 研究动植物宿主-微生物的相互作用,鉴定未培养细菌,对单核原核细胞进行分析[ |
拉曼镊子 | 通过拉曼显微镜区分生化特性不同的细胞,再用激光将其捕获 | 不需标记处理 | 只能分离生化特性显著不同的细胞 | 结合拉曼光镊和单细胞芯片分离癌细胞、红细胞、淋巴细胞和大肠杆菌[ |
涡旋与相分隔 | 通过高速涡旋形成油包水体系 | 通量高,效率高,成本低 | 难以保证过程的精确性 | 用于探究硫酸盐还原功能类群[ |
荧光细胞分选技术 | 基于所需细胞属性,结合多参数对特定细胞进行检测分离,同时评估生理学和分类学特性 | 灵敏度高,自动化程度高,可依据大小、粒度、荧光等属性分选 | 通量中等,成本高 | 分离丝状真菌并进行分类[ |
微流控技术 | 通过微流控芯片原件等设备包裹和分离单细胞样品 | 通量高,精确稳定 | 需要特定仪器装备,开发周期较长 | 单细胞全基因组测序及抗性基因分析[ |
细胞分离技术 | 技术简介 | 优点 | 局限性 | 应用案例 |
---|---|---|---|---|
有限稀释法 | 培养液稀释至约每0.1mL含有1个菌或细胞,根据泊松分布计算 | 简单廉价 | 准确性差,不具有针对性 | 对HIV-1病毒的全长序列进行测序[ |
显微操作法 | 机械显微操作,用毛细管从各类样品中捕获单个细胞 | 对细胞进行可视性评估 | 通量极低,易对细胞造成机械损伤 | 分离并检测食物中的致病菌[ |
激光捕获显微分离技术 | 将细胞进行固定和显色处理后直接分离 | 显色标记与分离结合,可分离复杂基质中的单细胞 | 通量低,易引入杂质或导致遗传信息丢失 | 研究动植物宿主-微生物的相互作用,鉴定未培养细菌,对单核原核细胞进行分析[ |
拉曼镊子 | 通过拉曼显微镜区分生化特性不同的细胞,再用激光将其捕获 | 不需标记处理 | 只能分离生化特性显著不同的细胞 | 结合拉曼光镊和单细胞芯片分离癌细胞、红细胞、淋巴细胞和大肠杆菌[ |
涡旋与相分隔 | 通过高速涡旋形成油包水体系 | 通量高,效率高,成本低 | 难以保证过程的精确性 | 用于探究硫酸盐还原功能类群[ |
荧光细胞分选技术 | 基于所需细胞属性,结合多参数对特定细胞进行检测分离,同时评估生理学和分类学特性 | 灵敏度高,自动化程度高,可依据大小、粒度、荧光等属性分选 | 通量中等,成本高 | 分离丝状真菌并进行分类[ |
微流控技术 | 通过微流控芯片原件等设备包裹和分离单细胞样品 | 通量高,精确稳定 | 需要特定仪器装备,开发周期较长 | 单细胞全基因组测序及抗性基因分析[ |
[1] | 朱忠旭, 陈新. 单细胞测序技术及应用进展[J]. 基因组学与应用生物学, 2015(5):9-15. |
Zhu Z, Chen X. Single cell sequencing technology and its applications progress[J]. Genomics and Applied Biology, 2015(5):9-15. | |
[2] |
Gawad C, Koh W, Quake SR, et al. Single-cell genome sequencing:current state of the science[J]. Nature Reviews Genetics, 2016,17(3):175-188.
URL pmid: 26806412 |
[3] |
Iscove N. Haematopoiesis. Searching for stem cells[J]. Nature, 1990,347(6289):126-127.
URL pmid: 2395468 |
[4] |
Telenius H, Carter NP, Bebb CE, et al. Degenerate oligonucleotide-primed PCR:General amplification of target DNA by a single degenerate primer[J]. Genomics, 1992,13(3):718-725.
URL pmid: 1639399 |
[5] |
Dean FB, Nelson JR, Giesler TL, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Res, 2001,11(6):1095-1099.
URL pmid: 11381035 |
[6] |
Raghunathan A, Ferguson HR, Bornarth CJ, et al. Genomic DNA amplification from a single bacterium[J]. Applied and Environmental Microbiology, 2005,71(6):3342-3347.
URL pmid: 15933038 |
[7] |
Lasken RS. Single-cell genomic sequencing using Multiple Displacement Amplification.[J]. Current Opinion in Microbiology, 2007,10(5):510-516.
URL pmid: 17923430 |
[8] |
Stepanauskas R, Fergusson EA, Brown J, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles[J]. Nature Communications, 2017,8(1):84.
URL pmid: 28729688 |
[9] |
Zong CH, Lu SJ, Chapman AR, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012,338(6114):1622-1626.
URL pmid: 23258894 |
[10] | 张慧, 徐楚帆, 江来. 单细胞测序相关技术及其在生物医学研究中的应用[J]. 实用医学杂志, 2020,36(3):410-413. |
Zhang H, Xu C, Jiang L. Development of single-cell sequencing and its biomedical applications[J]. The Journal of Practical Medicine, 2020,36(3):410-413. | |
[11] | Sanschagrin S, Yergeau E. Next-generation sequencing of 16S ribosomal RNA gene amplicons[J]. Journal of Visualized Experiments, 2014(90):e51709. |
[12] |
Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome:Advantages of whole genome shotgun versus 16S amplicon sequencing[J]. Biochemical and Biophysical Research Communications, 2016,469(4):967-977.
URL pmid: 26718401 |
[13] |
Sims D, Sudbery I, Ilott NE, et al. Sequencing depth and coverage:key considerations in genomic analyses[J]. Nature Reviews Genetics, 2014,15(2):121-132.
URL pmid: 24434847 |
[14] |
Luo C, Rodriguez-RLM, Konstantinidis KT. A user’s guide to quantitative and comparative analysis of metagenomic datasets[J]. Methods in Enzymology, 2013,531:525-547.
URL pmid: 24060135 |
[15] | 魏子艳, 金德才, 邓晔. 环境微生物宏基因组学研究中的生物信息学方法[J]. 微生物学通报, 2015,42(5):890-901. |
Wei Z, Jin D, Deng Y. Bioinformatics tools and applications in the study of environmental microbial metagenomics[J]. Microbiology China, 2015,42(5):890-901. | |
[16] |
Thomas T, Gilbert J, Meyer F. Metagenomics-a guide from sampling to data analysis[J]. Microbial Informatics and Experimentation, 2012,2(1):3-14.
doi: 10.1186/2042-5783-2-3 URL pmid: 22587947 |
[17] |
Stepanauskas R. Single cell genomics:an individual look at microbes[J]. Current Opinion in Microbiology, 2012,15(5):613-620.
URL pmid: 23026140 |
[18] |
Bowers RM, Lee J, Woyke T. Sequencing of genomes from environmental single cells[J]. Methods Mol Biol, 2018,1712:97-111.
doi: 10.1007/978-1-4939-7514-3_8 URL pmid: 29224071 |
[19] |
Ishii S, Tago K, Senoo K. Single-cell analysis and isolation for microbiology and biotechnology:methods and applications[J]. Appl Microbiol Biotechnol, 2010,86(5):1281-1292.
doi: 10.1007/s00253-010-2524-4 URL pmid: 20309540 |
[20] |
Spencer SJ, Tamminen MV, Preheim SP, et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers[J]. ISME Journal, 2016,10(2):427-436.
doi: 10.1038/ismej.2015.124 URL pmid: 26394010 |
[21] |
Lan F, Demaree B, Ahmed N, et al. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding[J]. Nat Biotechnol, 2017,35(7):640-646.
doi: 10.1038/nbt.3880 URL pmid: 28553940 |
[22] | Sanchez Barea J, Lee J, Kang DK. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology[J]. Micromachines(Basel), 2019,10(6):412. |
[23] |
Hebberecht L, Vancoillie L, Schauvliege M, et al. Single genome sequencing of near full-length HIV-1 RNA using a limiting dilution approach[J]. J Virol Methods, 2019,274:113737.
URL pmid: 31562885 |
[24] |
Marisa H, Myriam M, Renaud C, et al. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety[J]. PLoS One, 2018, 13(5):e0198208-.
doi: 10.1371/journal.pone.0241865 URL pmid: 33152039 |
[25] |
Podgorny OV, Lazarev VN. Laser microdissection:A promising tool for exploring microorganisms and their interactions with hosts[J]. Journal of Microbiological Methods, 2017,138:82-92.
URL pmid: 26775287 |
[26] |
Fang T, Shang WH, Liu C, et al. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers[J]. Analytical Chemistry, 2019,91(15):9932-9939.
URL pmid: 31251569 |
[27] | Bleichrodt RJ, Read ND. Flow cytometry and FACS applied to filamentous fungi[J]. Fungal Biol Rev, 2019,33(1):1-15. |
[28] |
Huang L, Ma F, Chapman A, et al. Single-cell whole-genome amplification and sequencing:Methodology and applications[J]. Annu Rev Genomics Hum Genet, 2015,16:79-102.
doi: 10.1146/annurev-genom-090413-025352 URL pmid: 26077818 |
[29] | Blagodatskikh KA, Kramarov VM, Barsova EV, et al. Improved DOP-PCR(iDOP-PCR):A robust and simple WGA method for efficient amplification of low copy number genomic DNA[J]. PLoS One, 2017,12(9):12. |
[30] |
Pugh TJ, Delaney AD, Farnoud N, et al. Impact of whole genome amplification on analysis of copy number variants[J]. Nucleic Acids Research, 2008,36(13):e80.
doi: 10.1093/nar/gkn378 URL pmid: 18559357 |
[31] |
Xu Y, Zhao F. Single-cell metagenomics:challenges and applications[J]. Protein & Cell, 2018,9(5):501-510.
URL pmid: 29696589 |
[32] |
Woyke T, Doud DFR, Schulz F. The trajectory of microbial single-cell sequencing[J]. Nature Methods, 2017,14(11):1045-1054.
URL pmid: 29088131 |
[33] |
Clingenpeel S, Clum A, Schwientek P, et al. Reconstructing each cell’s genome within complex microbial communities-dream or reality?[J]. Frontiers in Microbiology, 2015,5:771.
doi: 10.3389/fmicb.2014.00771 URL pmid: 25620966 |
[34] | Povilaitis T, Alzbutas G, Sukackaite R, et al. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique[J]. Protein Engineering Design & Selection, 2016,29(12):617-628. |
[35] | Chen M, Song P, Zou D, et al. Comparison of multiple displacement amplification(MDA)and multiple annealing and looping-based amplification cycles(MALBAC)in single-cell sequencing[J]. PLoS One, 2014,9(12):e0124990. |
[36] |
de Bourcy CFA, De Vlaminck I, Kanbar JN, et al. A quantitative comparison of single-cell whole genome amplification methods[J]. PLoS One, 2014,9(8):e105585.
URL pmid: 25136831 |
[37] |
Chen C, Xing D, Tan L, et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion(LIANTI)[J]. Science, 2017,356(6334):189-194.
URL pmid: 28408603 |
[38] | Florenza J, Tamminen M, Bertilsson S. Uncovering microbial inter-domain interactions in complex communities[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2019,374(1786):20190087. |
[39] | Lovett M. The applications of single-cell genomics[J]. Hum Mol Genet, 2013,22:22-26. |
[40] | Dubey RK, Tripathi V, Prabha R, et al. Single-cell genomics and metagenomics for microbial diversity analysis[M]. Unravelling the Soil Microbiome. Switzerland:Springer, 2020: 33-49. |
[41] |
Munson-McGee JH, Field EK, Bateson M, et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across yellowstone national park hot springs[J]. Applied and Environmental Microbiology, 2015,81(22):7860-7868.
URL pmid: 26341207 |
[42] |
Woyke T, Jarett J. Function-driven single-cell genomics[J]. Microbial Biotechnology, 2015,8(1):38-39.
doi: 10.1111/1751-7915.12247 URL pmid: 25627845 |
[43] |
Trapnell C. Defining cell types and states with single-cell genomics[J]. Genome Research, 2015,25(10):1491-1498.
URL pmid: 26430159 |
[44] |
Pamp SJ, Harrington ED, Quake SR, et al. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria(SFB)[J]. Genome Research, 2012,22(6):1107-1119.
URL pmid: 22434425 |
[45] |
Lasken RS. Genomic sequencing of uncultured microorganisms from single cells[J]. Nature Reviews Microbiology, 2012,10(9):631-640.
doi: 10.1038/nrmicro2857 URL pmid: 22890147 |
[46] |
Locey KJ, Lennon JT. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(21):5970-5975.
doi: 10.1073/pnas.1521291113 URL pmid: 27140646 |
[47] |
Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 2013,499(7459):431-437.
URL pmid: 23851394 |
[48] |
Tyson GW, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature, 2004,428(6978):37-43.
doi: 10.1038/nature02340 URL pmid: 14961025 |
[49] |
Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(32):12115-12120.
doi: 10.1073/pnas.0605127103 URL pmid: 16880384 |
[50] |
Schloss PD, Girard RA, Martin T, et al. Status of the archaeal and bacterial census:an update[J]. mBio, 2016,7(3):e00201-16.
doi: 10.1128/mBio.00201-16 URL pmid: 27190214 |
[51] |
Wu D, Hugenholtz P, Mavromatis K, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea[J]. Nature, 2009,462(7276):1056-1060.
doi: 10.1038/nature08656 URL pmid: 20033048 |
[52] |
Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells[J]. Nature Reviews Genetics, 2014,15(9):577-584.
doi: 10.1038/nrg3785 URL pmid: 25091868 |
[53] |
Yu FB, Blainey PC, Schulz F, et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples[J]. eLife, 2017,6:e26580.
URL pmid: 28678007 |
[54] |
Sieracki ME, Poulton NJ, Jaillon O, et al. Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems[J]. Scientific Reports, 2019,9:6025.
doi: 10.1038/s41598-019-42487-1 URL pmid: 30988337 |
[55] |
Ahrendt SR, Quandt CA, Ciobanu D, et al. Leveraging single-cell genomics to expand the fungal tree of life[J]. Nature Microbiology, 2018,3(12):1417-1428.
URL pmid: 30297742 |
[56] | 李俊锋. 基于16S rRNA和宏基因组高通量测序的微生物多样性研究[D]. 北京:清华大学, 2015. |
Li J. Microbial diversity research based on high-throughput sequencing data of 16S rRNA and metagenome[D]. Beijing:Tsinghua University, 2015. | |
[57] |
Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology[J]. Trends in Genetics, 2008,24(3):142-149.
doi: 10.1016/j.tig.2007.12.006 URL pmid: 18262676 |
[58] | 许亚昆, 马越, 胡小茜, 等. 基于三代测序技术的微生物组学研究进展[J]. 生物多样性, 2019,27(5):534-542. |
Xu Y, Ma Y, Hu X, et al. Analysis of prospective microbiology research using third-generation sequencing technology[J]. Biodiversity Science, 2019,27(5):534-542.
doi: 10.17520/biods.2018201 URL |
|
[59] | 唐勇, 刘旭. SMRT测序技术及其在微生物研究中的应用[J]. 生物技术通报, 2018,34(6):48-53. |
Tang Y, Liu X. SMRT Sequencing and Its application in microorganism studies[J]. Biotechnology Bulletin, 2018,34(6):48-53. | |
[60] |
Kashtan N, Roggensack SE, Rodrigue S, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus[J]. Science, 2014,344(6182):416-420.
doi: 10.1126/science.1248575 URL pmid: 24763590 |
[61] |
Yoon HS, Price DC, Stepanauskas R, et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists[J]. Science, 2011,332(6030):714-717.
doi: 10.1126/science.1203163 URL pmid: 21551060 |
[62] |
Engel P, Stepanauskas R, Moran NA. Hidden diversity in honey bee gut symbionts detected by single-cell genomics[J]. PLoS Genetics, 2014,10(9):e1004596.
URL pmid: 25210772 |
[63] |
Jochum LM, Schreiber L, Marshall IPG, et al. Single-cell genomics reveals a diverse metabolic potential of uncultivated Desulfatiglans-related deltaproteobacteria widely distributed in marine sediment[J]. Frontiers in Microbiology, 2018,9:2038.
doi: 10.3389/fmicb.2018.02038 URL pmid: 30233524 |
[64] | Magdanova LA, Golyasnaya NV. Heterogeneity as an adaptive trait of microbial populations[J]. Microbiology, 2013,82(1):1-10. |
[65] |
Stepanauskas R. Wiretapping into microbial interactions by single cell genomics[J]. Frontiers in Microbiology, 2015,6:258.
doi: 10.3389/fmicb.2015.00258 URL pmid: 25904902 |
[66] |
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, et al. Uncovering earth’s virome[J]. Nature, 2016,536(7617):425-430.
doi: 10.1038/nature19094 URL pmid: 27533034 |
[67] |
Abergel C, Legendre M, Claverie JM. The rapidly expanding universe of giant viruses:Mimivirus, Pandoravirus, Pithovirus and Mollivirus[J]. FEMS Microbiology Reviews, 2015,39(6):779-796.
doi: 10.1093/femsre/fuv037 URL pmid: 26391910 |
[68] |
Roux S, Hawley AK, Beltran MT, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics[J]. eLife, 2014,3:e03125.
doi: 10.7554/eLife.03125 URL pmid: 25171894 |
[69] |
Martinez-Hernandez F, Fornas O, Lluesma Gomez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean[J]. ISME Journal, 2019,13(1):232-236.
URL pmid: 30228380 |
[70] |
Labonte JM, Pachiadaki M, Fergusson E, et al. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system[J]. Frontiers in Microbiology, 2019,10:1262.
URL pmid: 31244796 |
[71] |
Huber H, Hohn MJ, Rachel R, et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont[J]. Nature, 2002,417(6884):63-67.
doi: 10.1038/417063a URL pmid: 11986665 |
[72] |
He X, McLean JS, Edlund A, et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(1):244-249.
URL pmid: 25535390 |
[73] |
Comolli LR, Banfield JF. Inter-species interconnections in acid mine drainage microbial communities[J]. Frontiers in Microbiology, 2014,5:367.
URL pmid: 25120533 |
[74] |
Nakayama T, Nomura M, Takano Y, et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(32):15973-15978.
doi: 10.1073/pnas.1902538116 URL pmid: 31235587 |
[75] |
Farnelid HM, Turk-Kubo KA, Zehr JP. Identification of associations between bacterioplankton and photosynthetic picoeukaryotes in coastal waters[J]. Frontiers in Microbiology, 2016,7:339.
URL pmid: 27148165 |
[76] | Seymour JR, Amin SA, Raina JB, et al. Zooming in on the phycosphere:the ecological interface for phytoplankton-bacteria relationships[J]. Nature Microbiology, 2017,2(7):17065. |
[77] |
Abd H, Weintraub A, Sandstrom G. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae[J]. Environ Microbiol, 2005,7(7):1003-1008.
doi: 10.1111/j.1462-2920.2005.00771.x URL pmid: 15946296 |
[78] |
Qin HY, Wang S, Feng K, et al. Unraveling the diversity of sedimentary sulfate-reducing prokaryotes(SRP)across Tibetan saline lakes using epicPCR[J]. Microbiome, 2019,7(1):71.
URL pmid: 31054577 |
[79] |
Hultman J, Tamminen M, Parnanen K, et al. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent[J]. FEMS Microbiology Ecology, 2018, 94(4):fiy038.
doi: 10.1093/femsle/fnaa156 URL pmid: 33068111 |
[80] |
Chijiiwa R, Hosokawa M, Kogawa M, et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota[J]. Microbiome, 2020,8(1):5.
URL pmid: 31969191 |
[81] |
Doud DFR, Bowers RM, Schulz F, et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere[J]. The ISME Journal, 2019,14(3):659-675.
doi: 10.1038/s41396-019-0557-y URL pmid: 31754206 |
[82] | Richards TA, Massana R, Pagliara S, et al. Single cell ecology[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2019,374(1786):20190076. |
[83] |
Nurk S, Bankevich A, Antipov D, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products[J]. Journal of Computational Biology, 2013,20(10):714-737.
URL pmid: 24093227 |
[1] | GUO Dong-dong, SUN Fen, HE Xuan-ang, YANG Dong-ye, HUANG Lai-qiang. Application and Prospects of Single-Cell Sequencing in Liver Disease [J]. Biotechnology Bulletin, 2021, 37(1): 137-144. |
[2] | ZHU Qing-yuan, LI Tian-qing. Applications of Single-cell RNA Sequencing in Heart Development,Disease and Medicine [J]. Biotechnology Bulletin, 2021, 37(1): 145-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||