Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 226-236.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0336
Previous Articles Next Articles
SHI Li-xia(), GAO Song-feng, ZHU Lei-lei()
Received:
2020-03-20
Online:
2020-10-26
Published:
2020-11-02
Contact:
ZHU Lei-lei
E-mail:shilx@tib.cas.cn;zhu_ll@tib.cas.cn
SHI Li-xia, GAO Song-feng, ZHU Lei-lei. Research Advance in Polyethylene Terephthalate Hydrolytic Enzymes[J]. Biotechnology Bulletin, 2020, 36(10): 226-236.
Source | Enzyme | PDB ID | Material | Temperature/℃ | Time/h | Weight loss/% | References | |
---|---|---|---|---|---|---|---|---|
Metagenomic | Leaf-branch compost | LCC | 4EB0 | lc PET film | 70 | 48 | 95 | [ |
Fungi | Humilica insolens | HiC | 4OYY | lcPET film(7% crystallinity) | 70 | 96 | 97±3 | [ |
Fusarium solani | FsC | 1CEX | lcPET film(7% crystallinity) | 40 | 96 | 5±1 | [ | |
bacterial | Thermobifida cellulosilytica | Thc_Cut1 | 5LUI | PET film(37% crystallinity) | 50 | 72 | - | [ |
Thc_Cut2 | 5LUJ | |||||||
Thermobifida fusca | TfH(BTA1) | - | PET film | 65 | 48 | 12.9±1.2 | [ | |
Thermobifida fusca KW3 | TfCut2 | 4CG1 | amorphous PET film | 65 | 50 | 15.9±1.8 | [ |
Source | Enzyme | PDB ID | Material | Temperature/℃ | Time/h | Weight loss/% | References | |
---|---|---|---|---|---|---|---|---|
Metagenomic | Leaf-branch compost | LCC | 4EB0 | lc PET film | 70 | 48 | 95 | [ |
Fungi | Humilica insolens | HiC | 4OYY | lcPET film(7% crystallinity) | 70 | 96 | 97±3 | [ |
Fusarium solani | FsC | 1CEX | lcPET film(7% crystallinity) | 40 | 96 | 5±1 | [ | |
bacterial | Thermobifida cellulosilytica | Thc_Cut1 | 5LUI | PET film(37% crystallinity) | 50 | 72 | - | [ |
Thc_Cut2 | 5LUJ | |||||||
Thermobifida fusca | TfH(BTA1) | - | PET film | 65 | 48 | 12.9±1.2 | [ | |
Thermobifida fusca KW3 | TfCut2 | 4CG1 | amorphous PET film | 65 | 50 | 15.9±1.8 | [ |
Source of Lipases | Type of PET | Effect on PET | References |
---|---|---|---|
Thermomyces lanuginosus | Fabric,fibers PET trimer | Hydrolysis increased hydrophilicity | [ |
Aspergillus sp. | Fabric, PET trimer | Hydrolysis increased hydrophilicity | [ |
Porcine(hog)pancreas | Fabric | Increased hydrophilicity changes in surface morphology | [ |
Burkholderia cepacia | Fabric, PET trimer | Hydrolysis increased hydrophilicity | [ |
Candida antarctica | Fabric,fibers | Hydrolysis increased hydrophilicity | [ |
Source of Lipases | Type of PET | Effect on PET | References |
---|---|---|---|
Thermomyces lanuginosus | Fabric,fibers PET trimer | Hydrolysis increased hydrophilicity | [ |
Aspergillus sp. | Fabric, PET trimer | Hydrolysis increased hydrophilicity | [ |
Porcine(hog)pancreas | Fabric | Increased hydrophilicity changes in surface morphology | [ |
Burkholderia cepacia | Fabric, PET trimer | Hydrolysis increased hydrophilicity | [ |
Candida antarctica | Fabric,fibers | Hydrolysis increased hydrophilicity | [ |
[1] | Webb HK, Arnott J, Crawford RJ, et al. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate)[J]. Polymers, 2013,5(1):1-18. |
[2] | Bornscheuer UT. Feeding on plastic[J]. Science, 2016,351(6278):1154-1155. |
[3] | 李秀华, 王自瑛. PET降解研究进展[J]. 塑料科技, 2011,39(4):110-114. |
Li XH, Wang ZY. Research progress on degradation of PET[J]. Plastics Science and Technology, 2011,39(4):110-114. | |
[4] |
Sulaiman S, You DJ, Kanaya E, et al. Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase[J]. Biochemistry, 2014,53(11):1858-1869.
URL pmid: 24593046 |
[5] |
Shirke AN, White C, Englaender JA, et al. Stabilizing leaf and branch compost cutinase(LCC)with glycosylation:mechanism and effect on PET hydrolysis[J]. Biochemistry, 2018,57(7):1190-1200.
URL pmid: 29328676 |
[6] | Ronkvist ÅM, Xie W, Lu W, et al. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate)[J]. Macromolecules, 2009,42(14):5128-5138. |
[7] |
Kold D, Dauter Z, Laustsen AK, et al. Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase[J]. Protein Sci, 2014,23(8):1023-1035.
URL pmid: 24832484 |
[8] |
Sonia L, Czjzek M, Lamzin V, et al. Atomic resolution(1. 0 Å)crystal structure of Fusarium solani cutinase:stereochemical analysis[J]. Journal of Molecular Biology, 1997,268(4):779-799.
URL pmid: 9175860 |
[9] | Acero EH, Ribitsch D, Steinkellner G, et al. Enzymatic surface hydrolysis of PET:effect of structural diversity on kinetic properties of cutinases from Thermobifida[J]. Macromolecules, 2011,44(12):4632-4640. |
[10] |
Ribitsch D, Hromic A, Zitzenbacher S, et al. Small cause, large effect:structural characterization of cutinases from Thermobifida cellulosilytica[J]. Biotechnol Bioeng, 2017,114(11):2481-2488.
URL pmid: 28671263 |
[11] |
Then J, Wei R, Oeser T, et al. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca[J]. Biotechnol J, 2015,10(4):592-598.
URL pmid: 25545638 |
[12] | Roth C, Wei R, Oeser T, et al. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca[J]. Applied Microbiology & Biotechnology, 2014,98(18):7815-7823. |
[13] | Almansa E, Heumann S, Eberl A, et al. Enzymatic surface hydrolysis of PET enhances bonding in PVC coating[J]. Biocatalysis and Biotransformation, 2009,26(5):365-370. |
[14] | Brueckner T, Eberl A, Heumann S, et al. Enzymatic and chemical hydrolysis of poly(ethylene terephthalate)fabrics[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2008,46(19):6435-6443. |
[15] |
Eberl A, Heumann S, Brückner T, et al. Enzymatic surface hydrolysis of poly(ethylene terephthalate)and bis(benzoyloxyethyl)terephthalate by lipase and cutinase in the presence of surface active molecules[J]. Journal of Biotechnology, 2009,143(3):207-212.
URL pmid: 19616594 |
[16] |
Eberl A, Heumann S, Kotek R, et al. Enzymatic hydrolysis of PTT polymers and oligomers[J]. Journal of Biotechnology, 2008,135(1):45-51.
URL pmid: 18405994 |
[17] | Fischer-Colbrie G, Heumann S, Liebminger S, et al. New enzymes with potential for PET surface modification[J]. Biocatalysis, 2009,22(5-6):341-346. |
[18] | Hsieh YL, Cram LA. Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics[J]. Textile Research Journal, 2016,68(5):311-319. |
[19] | Kim HR, Song WS. Optimization of enzymatic treatment of polyester fabrics by lipase from Porcine Ppancreas[J]. Fibers and Polymers, 2008,9(4):423-430. |
[20] | Kim HR, Song WS. Lipase treatment of polyester fabrics[J]. Fibers & Polymers, 2006,7(4):339-343. |
[21] | Lee SH, Song WS. Surface modification of polyester fabrics by enzyme treatment[J]. Fibers & Polymers, 2010,11(1):54-59. |
[22] | Mccloskey JS. Method of treating polyester fabrics:US, 20060042019A1[P]. 2006-03-02. |
[23] | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016,351(6278):1196-1199. |
[24] | Purdy RE, Kolattukudy PE. Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi[J]. Biochemistry, 1975,14(13):2832-2840. |
[25] |
Silva C, Da S, Silva N, et al. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnology Journal, 2011,6(10):1230-1239.
doi: 10.1002/biot.201000391 URL pmid: 21751386 |
[26] |
Araújo R, Silva C, O’Neill A, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6, 6 fibers[J]. Journal of Biotechnology, 2007,128(4):849-857.
URL pmid: 17306400 |
[27] | 李秀, 杨海涛, 王泽方. 聚对苯二甲酸乙二醇酯降解酶的研究进展[J]. 微生物学报, 2019,59(12):2251-2262. |
Li X, Yang HT, Wang ZF. Advance in polyethylene terephthalate degrading enzyme[J]. Acta Microbiologica Sinica, 2019,59(12):2251-2262. | |
[28] |
Pellis A, Haernvall K, Pichler CM, et al. Enzymatic hydrolysis of poly(ethylene furanoate)[J]. Journal of Biotechnology, 2016,235:47-53.
URL pmid: 26854948 |
[29] |
Wei R, Zimmermann W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate[J]. Microb Biotechnol, 2017,10(6):1302-1307.
URL pmid: 28401691 |
[30] |
Kawabata T, Oda M, Kawai F. Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate[J]. Journal of Bioscience and Bioengineering, 2017,124(1):28-35.
URL pmid: 28259444 |
[31] |
Then J, Wei R, Oeser T, et al. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate[J]. FEBS Open Bio, 2016,6(5):425-432.
doi: 10.1002/2211-5463.12053 URL |
[32] |
Kim HW, Ishikawa K. The role of disulfide bond in hyperthermo-philic endocellulase[J]. Extremophiles, 2013,17(4):593-599.
doi: 10.1007/s00792-013-0542-8 URL pmid: 23624891 |
[33] |
Han ZL, Han SY, Zheng SP, et al. Enhancing thermostability of a Rhizomucor mieheilipase by engineering a disulfide bond and displaying on the yeast cell surface[J]. Appl Microbiol Biotechnol, 2009,85(1):117-126.
doi: 10.1007/s00253-009-2067-8 URL pmid: 19533118 |
[34] |
Tournier V, Topham CM, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020,580(7802):216-219.
URL pmid: 32269349 |
[35] | Barth M, Oeser T, Wei R, et al. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca[J]. Biochemical Engineering Journal, 2015,93:222-228. |
[36] |
Wei R, Oeser T, Schmidt J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition[J]. Biotechnology & Bioengineering, 2016,113(8):1658-1665.
URL pmid: 26804057 |
[37] |
Barth M, Honak A, Oeser T, et al. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films[J]. Biotechnology Journal, 2000,11(8):1082-1087.
URL pmid: 27214855 |
[38] | Hachem MA, Karlsson EN, Bartonek-Roxâ E, et al. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase:cloning, expression and binding studies[J]. Biochem J, 2000,345(Pt 1):53-60. |
[39] | Bolam DN, Ciruela A, McQueen-Mason S, et al. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity[J]. The Biochemical journal, 1998,331(Pt 3):775-781. |
[40] | Levy I, Shoseyov O. Cellulose-binding domains:Biotechnological applications[J]. Biotechnology Advances, 2002,20(3):191-213. |
[41] |
Ribitsch D, Yebra AO, Zitzenbacher S, et al. Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis[J]. Biomacromolecules, 2013,14(6):1769-1776.
URL pmid: 23718548 |
[42] |
Ribitsch D, Acero EH, Przylucka A, et al. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins[J]. Appl Environ Microbiol, 2015,81(11):3586-3592.
URL pmid: 25795674 |
[43] | Joo S, Cho IJ, Seo H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate)degradation[J]. Nature Communications, 2018,9(1):382. |
[44] |
Han X, Liu W, Huang JW, et al. Structural insight into catalytic mechanism of PET hydrolase[J]. Nat Commun, 2017,8(1):1-6.
URL pmid: 28232747 |
[45] |
Chen CC, Han X, Ko TP, et al. Structural studies reveal the molecular mechanism of PETase[J]. The FEBS journal, 2018,285(20):3717-3723.
URL pmid: 30048043 |
[46] |
Fecker T, Galaz-Davison P, Engelberger F, et al. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase[J]. Biophys J, 2018,114(6):1302-1312.
URL pmid: 29590588 |
[47] |
Buller AR, Townsend CA. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad[J]. Proc Natl Acad Sci USA, 2013,110(8):E653-E661.
URL pmid: 23382230 |
[48] | 靳玉瑞, 李爱秀, 张力. 一种新型PET水解酶的结构与催化机制研究进展[J]. 中国塑料, 2019,33(3):106-112. |
Jin YR, Li AX, Zhang L. Progress of the structure and catalytic mechanism of one new PET hydrolase[J]. China Plastics, 2019,33(3):106-112. | |
[49] |
Papadopoulou A, Hecht K, Buller R. Enzymatic PET degradation[J]. Chimia, 2019,73(9):743-749.
URL pmid: 31514776 |
[50] |
Wei R, Song C, Gräsing D, et al. Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation[J]. Nature Communications, 2019,10(1):5581.
doi: 10.1038/s41467-019-13492-9 URL |
[51] |
Seo H, Cho IJ, Joo S, et al. Reply to “Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation”[J]. Nature Communications, 2019,10(1):5582.
URL pmid: 31811201 |
[52] |
Taniguchi I, Yoshida S, Hiraga K, et al. Biodegradation of PET:current status and application aspects[J]. ACS Catalysis, 2019,9(5):4089-4105.
doi: 10.1021/acscatal.8b05171 URL |
[53] | Wei R, Oeser T, Barth M, et al. Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2014,103:72-78. |
[54] |
Austin HP, Allen MD, Donohoe BS, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. Proc Natl Acad Sci USA, 2018,115(19):E4350-E4357.
URL pmid: 29666242 |
[55] | Ma Y, Yao M, Li B, et al. Enhanced poly(ethylene terephthalate)hydrolase activity by protein engineering[J]. Engineering, 2018,4(6):888-893. |
[56] |
Liu B, He L, Wang L, et al. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate)hydrolase PETase from Ideonella sakaiensis[J]. Chembiochem, 2018,19(14):1471-1475.
doi: 10.1002/cbic.201800097 URL pmid: 29603535 |
[57] |
Liu C, Shi C, Zhu S, et al. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis[J]. Biochemical and Biophysical Research Communications, 2019,508(1):289-294.
URL pmid: 30502092 |
[58] |
Alves NM, Mano JF, Balaguer E, et al. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate):A DSC study[J]. Polymer, 2002,43(15):4111-4122.
doi: 10.1016/S0032-3861(02)00236-7 URL |
[59] |
Chen CC, Dai L, Ma L, et al. Enzymatic degradation of plant biomass and synthetic polymers[J]. Nature Reviews Chemistry, 2020,4(3):114-126.
doi: 10.1038/s41570-020-0163-6 URL |
[60] |
Kawai F, Oda M, Tamashiro T, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190[J]. Appl Microbiol Biotechnol, 2014,98(24):10053-10064.
doi: 10.1007/s00253-014-5860-y URL |
[61] |
Son HF, Cho IJ, Joo S, et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J]. ACS Catalysis, 2019,9(4):3519-3526.
doi: 10.1021/acscatal.9b00568 URL |
[62] | 王泽方, 杨海涛, 王雪, 等. 细胞表面展示PET分解酶的重组毕赤酵母及构建与应用:中国, CN201610912589. 1[P]. 2016-10-20. |
Wang ZF, Yang HT, Wang X, et al. Recombinant Pichia pastoris for displaying PET lyase on cell surface and construction and application thereof:China, CN201610912589. 1[P]. 2016-10-20. | |
[63] | 王泽方, 杨海涛, 王雪, 等. 细胞表面共展示PET分解酶和疏水蛋白的重组毕赤酵母:中国, CN201610912165. 5[P]. 2016-10-20. |
Wang ZF, Yang HT, Wang X, et al. Recombinant Pichia pastoris for displaying PET lyase and hydrophobin on cell surface:China, CN201610912165. 5[P]. 2016-10-20. | |
[64] |
Furukawa M, Kawakami N, Oda K, et al. Acceleration of enzymatic degradation of poly(ethylene terephthalate)by surface coating with anionic surfactants[J]. ChemSusChem, 2018,11(23):4018-4025.
doi: 10.1002/cssc.201802096 URL pmid: 30291679 |
[65] |
Huang X, Cao L, Qin Z, et al. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide[J]. Journal of Agricultural and Food Chemistry, 2018,66(50):13217-13227.
URL pmid: 30465427 |
[66] |
Seo H, Kim S, Son HF, et al. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli[J]. Biochemical and Biophysical Research Communications, 2019,508(1):250-255.
URL pmid: 30477746 |
[67] |
Moog D, Schmitt J, Senger J, et al. Using a marine microalga as a chassis for polyethylene terephthalate(PET)degradation[J]. Microb Cell Fact, 2019,18(1):171.
URL pmid: 31601227 |
[68] | Chen ZZ, Wang YY, Cheng YY, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase[J]. Science of the Total Environment, 2020,709:136138. |
[69] | 苏怡丹, 伍宁丰, 刘国安. 蛋白质定向进化技术的研究进展[J]. 生物技术通报, 2009(11):43-47. |
Su YD, Wu NF, Liu GA. Research on directed evolution of protein[J]. Biotechnology Bulletin, 2009(11):43-47. | |
[70] | 付畅, 林海龙, 李海莹, 等. 蛋白质体外定向进化策略研究进展[J]. 生物技术通报, 2012(7):36-40. |
Fu C, Lin HL, Li HY, et al. Advances in study on directed molecular evolution strategy in vitro of protein[J]. Biotechnology Bulletin, 2012(7):36-40. | |
[71] | 朱蕾蕾, 石利霞, 高松枫. 一种信号肽突变体及其应用:中国, CN202010025261. 4[P]. |
Zhu LL, Shi LX, Gao SF. Signal peptide mutant and application thereof:China, CN202010025261. 4[P]. | |
[72] | 杨媛, 张剑. 微生物脂肪酶的性质及应用研究[J]. 中国洗涤用品工业, 2017(4):47-54. |
Yang Y, Zhang J. Study on properties and application of microbial lipase[J]. China Cleaning Industry, 2017(4):47-54. | |
[73] | Zimmermann W, Billig S. Enzymes for the biofunctionalization of poly(ethylene terephthalate)[J]. Adv Biochem Eng Biotechnol, 2011,125(1):97-120. |
[74] | Fernandez, Lafuente R. Lipase from Thermomyces lanuginosus:Uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B:Enzymatic, 2010,62(3-4):197-212. |
[75] |
Noble ME, Cleasby A, Johnson LN, et al. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate[J]. FEBS Letters, 1993,331(1-2):123-128.
doi: 10.1016/0014-5793(93)80310-q URL pmid: 8405390 |
[76] |
Brzozowski AM, Savage H, Verma CS, et al. Structural origins of the interfacial activation in Thermomyces(Humicola)lanuginosa lipase[J]. Biochemistry, 2000,39(49):15071-15082.
doi: 10.1021/bi0013905 URL pmid: 11106485 |
[77] |
Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019,103:4253-4268.
URL pmid: 30957199 |
[78] |
Palm GJ, Reisky L, Böttcher D, et al. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate[J]. Nature Communications, 2019,10(1):1717.
doi: 10.1038/s41467-019-09326-3 URL pmid: 30979881 |
[1] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[2] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[3] | CHEN Quan-bing, CAO Wei-jie, LI Chun, LV Bo. Molecular Evolutionary Relationship and Protein Structure of Glycoside Hydrolases from GH79 Family [J]. Biotechnology Bulletin, 2023, 39(1): 104-114. |
[4] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[5] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[6] | QIAO Jing, CUI Sheng-rong, SHI Hong-wu, LUO Zu-liang, MA Xiao-jun. Homology Modeling and Molecular Docking of Cycloartenol Synthase in Siraitia grosvenorii and Speculated Mechanism of Catalytic Cyclization [J]. Biotechnology Bulletin, 2019, 35(2): 101-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||