Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 170-177.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0421
Previous Articles Next Articles
WANG Lian-hong(), ZHANG Qiu-yun, LIU Jia-lin, SHEN Ya-qi, OUYANG Lin-juan, HE Hao-hua, HU Li-fang()
Received:
2020-04-14
Online:
2020-12-26
Published:
2020-12-22
Contact:
HU Li-fang
E-mail:lomoching@163.com;lfhu_hn337@163.com
WANG Lian-hong, ZHANG Qiu-yun, LIU Jia-lin, SHEN Ya-qi, OUYANG Lin-juan, HE Hao-hua, HU Li-fang. Advances in the Study of Genes Related to Pollen Exine Sporopollen Synthesis and Transport in Rice[J]. Biotechnology Bulletin, 2020, 36(12): 170-177.
基因 | 编码蛋白 | 功能 | 文献 |
---|---|---|---|
CYP703A3 Os08g0131100 | 链内羟化酶月桂酸(中链脂肪酸) | 催化孢粉素合成中间产物C10至C14脂肪酸的链内羟基化 | [6] |
CYP704B2 Os03g0168600 | v-羟基化脂肪酸 | 催化孢粉素合成中间产物C16至C18长链脂肪酸的ω-羟基化 | [7] |
GAMYB Os01g0812000 | 一种R2R3MYB转录因子 | 激活CYP703A3表达,间接调控孢粉素前体物质合成 | [8] |
DPW Os03g0167600 | 脂肪酰基载体蛋白还原酶 | 将棕榈酰ACP和辅酶A酯还原为脂肪醇,是孢粉素生物合成的初级脂肪醇 | [9] |
DPW2 Os01g0924933 | 细胞质定位的BAHD酰基转移酶 | 催化羟基化的孢粉素合成中间产物ω-羟基脂肪酸转化为羟基肉桂酰辅酶A | [10] |
OsACOS12 Os04g0310800 | 酰基辅酶A合成酶 | 催化C18:1形成C18:1-CoA,参与孢粉质前体所需的脂酰辅酶A合成 | [11] |
OsPKS1 Os10g0484800 | PKS III超家族蛋白 | 催化次生代谢物的合成。催化脂酰CoA缩合生成孢粉素合成所需的3-α-吡喃酮 | [12] |
OsPKS2 Os07g0411300 | 聚酮化合物合成酶 | 催化丙二酰CoA缩合生成孢粉素合成所需的4-α-吡喃酮 | [13] |
OsTKPR1 Os09g0493500 | 四肽α-吡喃酮还原酶 | 催化PKS产生的四酮的羰基还原为仲醇,是孢粉素前体合成必须物质 | [14] |
Wda1 Os10g0471100 | 一个富含组氨酸基序的蛋白质 | 还原超长链脂肪酸为各种所需要的脂肪醇类,影响孢粉素前体的合成 | [15] |
OsCER1 Os02g0621300 | 脂肪酸羟化酶 | 还原超长链脂肪酸(VLCFAs)为各种所需要的脂肪醇类,调控孢粉素前体的合成 | [16] |
OsNP1 Os10g0524500 | 一种假定的葡萄糖-甲醇-胆碱氧化还原酶 | 具有催化醇氧化成相应醛的生物化学活性。可催化脂肪酸中链羟基脱水生成环氧化物,对孢粉素合成产生影响 | [17] |
HTH1 Os04g0573100 | 一种假定的葡萄糖-甲醇-胆碱氧化还原酶 | 催化孢粉素合成中间产物长链α-,邻二羧酸脂肪酸的氧化 | [18] |
OsGPAT3 Os11g0679700 | 甘油-3-磷酸酰基转移酶 | OsGPAT3直接或间接影响各种孢粉素合成代谢相关基因 | [19] |
基因 | 编码蛋白 | 功能 | 文献 |
---|---|---|---|
CYP703A3 Os08g0131100 | 链内羟化酶月桂酸(中链脂肪酸) | 催化孢粉素合成中间产物C10至C14脂肪酸的链内羟基化 | [6] |
CYP704B2 Os03g0168600 | v-羟基化脂肪酸 | 催化孢粉素合成中间产物C16至C18长链脂肪酸的ω-羟基化 | [7] |
GAMYB Os01g0812000 | 一种R2R3MYB转录因子 | 激活CYP703A3表达,间接调控孢粉素前体物质合成 | [8] |
DPW Os03g0167600 | 脂肪酰基载体蛋白还原酶 | 将棕榈酰ACP和辅酶A酯还原为脂肪醇,是孢粉素生物合成的初级脂肪醇 | [9] |
DPW2 Os01g0924933 | 细胞质定位的BAHD酰基转移酶 | 催化羟基化的孢粉素合成中间产物ω-羟基脂肪酸转化为羟基肉桂酰辅酶A | [10] |
OsACOS12 Os04g0310800 | 酰基辅酶A合成酶 | 催化C18:1形成C18:1-CoA,参与孢粉质前体所需的脂酰辅酶A合成 | [11] |
OsPKS1 Os10g0484800 | PKS III超家族蛋白 | 催化次生代谢物的合成。催化脂酰CoA缩合生成孢粉素合成所需的3-α-吡喃酮 | [12] |
OsPKS2 Os07g0411300 | 聚酮化合物合成酶 | 催化丙二酰CoA缩合生成孢粉素合成所需的4-α-吡喃酮 | [13] |
OsTKPR1 Os09g0493500 | 四肽α-吡喃酮还原酶 | 催化PKS产生的四酮的羰基还原为仲醇,是孢粉素前体合成必须物质 | [14] |
Wda1 Os10g0471100 | 一个富含组氨酸基序的蛋白质 | 还原超长链脂肪酸为各种所需要的脂肪醇类,影响孢粉素前体的合成 | [15] |
OsCER1 Os02g0621300 | 脂肪酸羟化酶 | 还原超长链脂肪酸(VLCFAs)为各种所需要的脂肪醇类,调控孢粉素前体的合成 | [16] |
OsNP1 Os10g0524500 | 一种假定的葡萄糖-甲醇-胆碱氧化还原酶 | 具有催化醇氧化成相应醛的生物化学活性。可催化脂肪酸中链羟基脱水生成环氧化物,对孢粉素合成产生影响 | [17] |
HTH1 Os04g0573100 | 一种假定的葡萄糖-甲醇-胆碱氧化还原酶 | 催化孢粉素合成中间产物长链α-,邻二羧酸脂肪酸的氧化 | [18] |
OsGPAT3 Os11g0679700 | 甘油-3-磷酸酰基转移酶 | OsGPAT3直接或间接影响各种孢粉素合成代谢相关基因 | [19] |
基因 | 编码蛋白 | 功能 | 文献 |
---|---|---|---|
OsABCG3 Os01g0836600 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,将脂质分子跨膜运往花粉壁 | [20] |
OsABCG15 Os06g0607700 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,运输孢粉素前体至花药室 | [21] |
OsABCG26 Os10g0494300 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,运输孢粉素前体至花粉壁 | [22] |
PTC1 Os09g0449000 | PHD-finger蛋白 | 作为具有转录激活活性的转录因子起作用,靶向一些参与孢粉素前体生物合成和转运的基因 | [23] |
OsEMF2b Os09g0306800 | 是Zeste抑制子,编码核心的PcG蛋白 | 介导OsLFL1和OsMADS4的H3K27me3沉积,可调控PTC1和GAMYB的表达介导孢粉素前体的合成 | [24] |
OsLecRK-S.7 Os02g0459600 | 一种质膜定位的豆荚凝集素受体激酶,编码LecRLK蛋白 | 该基因高表达,导致突变体花粉中外壁增厚,影响突变体花药中孢粉素运输 | [25] |
DPW3 Os02g0100700 | 一种α整合素样蛋白 | 催化羟基化的孢粉素合成中间产物脂肪酸转化为脂肪醇 | [27] |
OsC6/Osg6B Os11g0582500 | 脂质转移蛋白 | 具有脂质结合活性,参与孢粉素前体的转运 | [28] |
基因 | 编码蛋白 | 功能 | 文献 |
---|---|---|---|
OsABCG3 Os01g0836600 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,将脂质分子跨膜运往花粉壁 | [20] |
OsABCG15 Os06g0607700 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,运输孢粉素前体至花药室 | [21] |
OsABCG26 Os10g0494300 | ABC转运蛋白 | ABC转运蛋白是孢粉素前体跨膜转运所必需,该基因利用ATP衍生的能量,运输孢粉素前体至花粉壁 | [22] |
PTC1 Os09g0449000 | PHD-finger蛋白 | 作为具有转录激活活性的转录因子起作用,靶向一些参与孢粉素前体生物合成和转运的基因 | [23] |
OsEMF2b Os09g0306800 | 是Zeste抑制子,编码核心的PcG蛋白 | 介导OsLFL1和OsMADS4的H3K27me3沉积,可调控PTC1和GAMYB的表达介导孢粉素前体的合成 | [24] |
OsLecRK-S.7 Os02g0459600 | 一种质膜定位的豆荚凝集素受体激酶,编码LecRLK蛋白 | 该基因高表达,导致突变体花粉中外壁增厚,影响突变体花药中孢粉素运输 | [25] |
DPW3 Os02g0100700 | 一种α整合素样蛋白 | 催化羟基化的孢粉素合成中间产物脂肪酸转化为脂肪醇 | [27] |
OsC6/Osg6B Os11g0582500 | 脂质转移蛋白 | 具有脂质结合活性,参与孢粉素前体的转运 | [28] |
[1] | 马龙, 徐薇, 窦玲玲, 等. 水稻花粉育性相关基因研究进展[J]. 江苏农业科学, 2019,47(10):42-47. |
Ma L, Xu W, Dou LL, et al. Research progress on pollen fertility-related genes in rice(Oryza sativa L.)[J]. Jiangsu Agricultural Sciences, 2019,47(10):42-47. | |
[2] | Wang K, Guo ZL, Zhou WT, et al. The regulation of sporopollenin biosynjournal genes for rapid pollen wall formation[J]. Plant Physiology, 2018,10(9):221-240. |
[3] | 刘启明, 陈振华, 韩霄, 等. 水稻核不育突变体gsl5花粉壁单糖组分研究[J]. 生物技术通报, 2017,33(9):116-119. |
Liu QM, Chen ZH, Han X, et al. Monosaccharide components of the male sterile mutant gsl5 in rice[J]. Biotechnology Bulletin, 2017,33(9):116-119. | |
[4] | 周晓冬, 周娟, 张雪松, 等. 非生物胁迫影响水稻颖花育性机理的研究进展[J]. 应用生态学报, 2017,28(12):4127-4133. |
Zhou XD, Zhou J, Zhang XS, et al. Progress in decoding the impact of abiotic stress on spikelet fertility in rice[J]. Chinese Journal of Applied Ecology, 2017,28(12):4127-4133. | |
[5] | 陈睿, 李清贤, 杨绍华, 等. 水稻花粉发育相关基因的研究进展[J]. 福建农业学报, 2010,25(3):274-280. |
Chen R, Li QX, Yang SH, et al. Research advances on rice genes related to pollen development[J]. Fujian Journal of Agricultural Sciences, 2010,25(3):274-280. | |
[6] | Yang XJ, Wu D, Shi JX, et al. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine[J]. Journal of Integrative Plant Biology, 2014,56(10):26-39. |
[7] | Li H, Pinot F, Vincent S, et al. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynjournal and pollen exine formation in rice[J]. American Society of Plant Biologists, 2010,22(1):177-190. |
[8] |
Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-offunction mutations of the rice GAMYB gene impairα-amylase expression in aleurone and flower development[J]. The Plant Cell, 2004,16(1):33-44.
doi: 10.1105/tpc.017327 URL pmid: 14688295 |
[9] | Wang W, Ma YY, Suo Y, et al. Crystallization and preliminary crystallographic analysis of defective pollen wall(DPW)protein from Oryza sativa[J]. Acta Crystallographica Section F Structural Biology Communications, 2014,70(6):758-760. |
[10] | Xu DW, Shi JX, Carsten R, et al. Defective Pollen Wall 2(DPW2)encodes an acyl transferase required for rice pollen development[J]. American Society of Plant Biologists, 2017,173(1):120-146. |
[11] | Yang XJ, Liang WQ, Chen MJ, et al. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility[J]. Planta, 2017,246(1):1777-1793. |
[12] | Zou T, Xiao Q, Li WJ, et al. OsLAP6/OsPKS1, an orthologue of Arabidopsis PKSA/LAP6, is critical for proper pollen exine formation[J]. Rice, 2017,10(1):63-79. |
[13] | Zhu XL, Yu J, Shi JX, et al. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice[J]. Journal of Integrative Plant Biology, 2017,59(9):9-23. |
[14] |
Xu DW, Qu SY, Matthew R, et al. Ostkpr1 functions in anther cuticle development and pollen wall formation in rice[J]. BioMed Central, 2019,19(1):76-93.
URL pmid: 31272434 |
[15] |
Jung KH, Han MJ, Lee DY, et al. Wax-deficient anther 1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. The Plant Cell, 2006,18(11):3015-3032
URL pmid: 17138699 |
[16] | Ni ED, Zhou LY, Li J, et al. OsCER1 plays a pivotal role in very-long-chain alkane biosynjournal and affects plastid development and programmed cell death of tapetum in rice(Oryza sativa L.)[J]. Frontiers in Plant Science, 2018,9(3):43-60. |
[17] | Liu Z, Lin S, Shi JX, et al. Rice No Pollen 1(NP 1)is required for anther cuticle formation and pollen exine patterning[J]. The Plant Journal, 2017,91(2):1222-1250. |
[18] | Xu Y, Liu SS, Liu YQ, et al. HOTHEAD-Like HTH1 is involved in anther cutin biosynjournal and is required for pollen fertility in rice[J]. Plant & Cell Physiology, 2017,58(7):466-503. |
[19] | Sun LP, Xiang XJ, Yang ZF, et al. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice[J]. International Journal of Molecular Sciences, 2018,19(12):233-250. |
[20] | Chang ZY, Jin MN, Yan W, et al. The ATP-binding cassette(ABC)transporter OsABCG3 is essential for pollen development in rice[J]. Rice, 2018,11(1):67-81. |
[21] | Qin P, Tu B, Wang YP, et al. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice[J]. Plant & cell physiology, 2013,54(1):196-221. |
[22] | Chang ZY, Chen ZF, Yan W, et al. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice[J]. Plant Science, 2016,25(3):1877-1904. |
[23] | Li H, Yuan Z, Vizcay-Barrena G, et al. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiology, 2011,156(2):750-765. |
[24] | Deng LC, Zhang SW, Wang GL, et al. Down-regulation of OsEMF2b caused semi-sterility due to anther and pollen development defects in rice[J]. Frontiers in Plant Science, 2017,8(2):290-317. |
[25] | Peng X, Wang M, Li Y, et al. Lectin receptor kinase OsLecRK-S. 7 is required for pollen development and male fertility[J]. Journal of Integrative Plant Biology, 2019,23(1):86-122. |
[26] | 杨柳. 水稻花粉外壁孢粉素沉积相关基因DPW3(Defective Pollen Wall3)的克隆和功能分析[D]. 上海:华东师范大学, 2016. |
Yang L. Map-based Cloning and functional analysis of DPW3(Defective Pollen Wall3)required for sporopollenin deposition in rice pollen exine[D]. Shanghai:East China Normal University, 2016. | |
[27] | Mondol PC, Xu DW, Duan L, et al. Defective Pollen Wall 3(DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice[J] New Phytologist, 2020,225(2):807-822. |
[28] | Zhang DS, Liang WQ, Yin CS, et al. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice[J]. Plant Physiology, 2010,154(1):360-385. |
[29] | Jumanah MA, Tong WL, Tengku FT, et al. OSC6:An audit on the efficiency of chair-mounted led light curing units in faculty of dentistry, universiti teknologi MARA, malaysia[J]. Journal of Indian Prosthodontic Society, 2018,177(6):233-259. |
[30] | 石晶, 梁婉琪, 张大兵, 等. 植物花粉壁的发育[J]. 植物生理学通讯, 2007,157(3):588-592. |
Shi J, Liang WQ, Zhang DB, et al. Pollen wall development in plant[J]. Plant Physiology Communications, 2007,157(3):588-592. | |
[31] | Blackmore S, Wortley AH, Skvarla JJ, et al. Pollen wall development in flowering plants[J]. New Phytologist, 2007,174(3):32-57. |
[32] | Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. The Plant Cell, 2006,18(11):58-72. |
[33] | 朱灵英, 郭娟, 张爱丽, 等. 参与植物三萜生物合成的细胞色素P450酶研究进展[J]. 中草药. 2019,120(22):75-89. |
Zhu LY, Guo J, Zhang AL, et al. Research progress on CYP450 involved in medicinal plant triterpenoid biosynjournal[J]. Chinese Traditional and Herbal Drugs, 2019,120(22):75-89. | |
[34] |
Zhao GC, Shi JX, Liang WQ, et al. Two ATP binding cassette Gtransporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction[J]. Plant Physiology, 2015,169(3):2064-2079.
URL pmid: 26392263 |
[35] |
Tsuchiya T, Toriyama K, Ejiri S, et al. Molecular characterization of rice genes specifically expressed in the anther tapetum[J]. Plant Molecular Biology, 1994,26(6):1737-1746.
URL pmid: 7858214 |
[36] | Tang JY, Chu CC. MicroRNAs in crop improvement:fine-tuners for complex traits[J]. Nature Plants, 2017,3(7):170-177. |
[37] | Zheng SY, Li J, Ma L, et al. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(15):230-253. |
[38] | Li YL, Zhang YF, Li D, et al. Acyl-CoA synthetases from Physco-mitrella, rice and Arabidopsis:different substrate preferences but common regulation by MS188 in sporopollenin synjournal[J]. Planta, 2019,250(2):45-60. |
[39] | Fan TF, Hwang Y, Potroz MG, et al. Degradation of the sporopollenin exine capsules(SECs in human plasma[J]. Applied Materials Today, 2020,19(4):1330-1364. |
[40] |
Zou T, Li SC, Liu MX, et al. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice[J]. Scientific Reports, 2017,7(1):1730-1756.
doi: 10.1038/s41598-017-01824-y URL pmid: 28496187 |
[41] | Tan EL, Potroz MG, Ferracci G, et al. Hydrophobic to superhydrophilic tuning of multifunctional sporopollenin for microcapsule and bio-composite applications[J]. Applied Materials Today, 2020,18:100525. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[10] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[11] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[12] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[13] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[14] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
[15] | SHI Jia, ZHU Xiu-mei, XUE Meng-yu, YU Chao, WEI Yi-ming, YANG Feng-huan, CHEN Hua-min. Optimization and Application of the Chromatin Immunoprecipitation Based on Rice Protoplast [J]. Biotechnology Bulletin, 2022, 38(7): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||