Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 192-201.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1347
Previous Articles Next Articles
LIU Hai-guang1,2(), LUO Zhen2(), DONG He-zhong1,2()
Received:
2020-11-02
Online:
2021-06-26
Published:
2021-07-08
Contact:
LUO Zhen,DONG He-zhong
E-mail:18369656696@163.com;ppluo440@126.com;donghezhong@163.com
LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant[J]. Biotechnology Bulletin, 2021, 37(6): 192-201.
[1] |
Perchlik M, Tegeder M. Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress[J]. Plant Physiology, 2018, 178(1):174-188.
doi: 10.1104/pp.18.00597 URL |
[2] | 中国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017. |
National bureau of statistics of China. Statistical yearbook of China[M]. Beijing: China Statistics Press, 2017. | |
[3] |
Lu CQ, Tian HQ. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century:shifted hot spots and nutrient imbalance[J]. Earth System Science Data, 2017, 9(1):181-192.
doi: 10.5194/essd-9-181-2017 URL |
[4] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014(4):783-795. |
Ju XT, Gu BJ. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014(4):783-795. | |
[5] |
Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8):458-467.
doi: 10.1016/j.tplants.2012.04.006 URL |
[6] |
Li H, Hu B, Chu C. Nitrogen use efficiency in crops:lessons from Arabidopsis and rice[J]. Journal of Experimental Botany, 2017, 68(10):2477-2488.
doi: 10.1093/jxb/erx101 URL |
[7] |
Xu G, Fan X, Miller AJ. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63:153-182.
doi: 10.1146/annurev-arplant-042811-105532 URL |
[8] |
Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10):389-395.
doi: 10.1016/S1360-1385(98)01311-9 URL |
[9] |
Tsay YF. Schroeder JI, Feldmann KA, et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72(5):705-713.
pmid: 8453665 |
[10] |
Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. EMBO Journal, 2003, 22(5):1005-1013.
doi: 10.1093/emboj/cdg118 URL |
[11] |
Ho CH, Lin SH, Hu HC, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6):1184-1194.
doi: 10.1016/j.cell.2009.07.004 URL |
[12] |
Morère-Le Paven MC, Viau L, Hamon A, et al. Characterization of a dual-affinity nitrate transporter MtNRT1. 3 in the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2011, 62(15):5595-5605.
doi: 10.1093/jxb/err243 URL |
[13] |
Bouguyon E, Brun F, Meynard D, et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1. 1[J]. Nature Plants, 2015, 1:15015.
doi: 10.1038/nplants.2015.15 pmid: 27246882 |
[14] |
Buchner P, Hawkesford MJ. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family(NPF)in wheat[J]. Journal of Experimental Botany, 2014, 65(19):5697-5710.
doi: 10.1093/jxb/eru231 URL |
[15] |
Fan X, Naz M, Fan X, et al. Plant nitrate transporters:from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10):2463-2475.
doi: 10.1093/jxb/erx011 URL |
[16] |
Hu B, Wang W, Ou S, et al. Variation in NRT1. 1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7):834-838.
doi: 10.1038/ng.3337 URL |
[17] | Wang R, Crawford NM. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17):9297-9301. |
[18] |
Kanno Y, Kamiya Y, Seo M. Nitrate does not compete with abscisic acid as a substrate of AtNPF4. 6/NRT1. 2/AIT1 in Arabidopsis[J]. Plant Signal Behav, 2013, 8(12):e26624.
doi: 10.4161/psb.26624 URL |
[19] |
Huang NC, Liu KH, Lo HJ, et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J]. The Plant Cell, 1999, 11(8):1381-1392.
doi: 10.1105/tpc.11.8.1381 URL |
[20] |
Fraisier V, Dorbe MF, Daniel-Vedele F. Identification and expression analyses of two genes encoding putative low-affinity nitrate transporters from Nicotiana plumbaginifolia[J]. Plant Molecular Biology, 2001, 45(2):181-190.
doi: 10.1023/A:1006426616760 URL |
[21] |
Zhou JJ, Theodoulou FL, Muldin I, et al. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine[J]. The Journal of Biological Chemistry, 1998, 273(20):12017-12023.
doi: 10.1074/jbc.273.20.12017 URL |
[22] |
Li W, Wang Y, Okamoto M, et al. Dissection of the AtNRT2. 1:AtNRT2. 2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143(1):425-433.
doi: 10.1104/pp.106.091223 URL |
[23] | Yan M, Fan X, Feng H, et al. Rice OsNAR2. 1 interacts with OsNRT2. 1, OsNRT2. 2 and OsNRT2. 3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant, Cell & Environment, 2011, 34(8):13601372. |
[24] |
Chen J, Zhang Y, Tan Y, et al. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2. 1 expression with the OsNAR2. 1 promoter[J]. Plant Biotechnology Journal, 2016, 14(8):1705-1715.
doi: 10.1111/pbi.2016.14.issue-8 URL |
[25] |
Kiba T, Feria-Bourrellier AB, Lafouge F, et al. The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants[J]. Plant Cell, 2012, 24(1):245-258.
doi: 10.1105/tpc.111.092221 URL |
[26] |
Lezhneva L, Kiba T, Feria-Bourrellier AB, et al. The Arabidopsis nitrate transporter NRT2. 5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2):230-241.
doi: 10.1111/tpj.12626 pmid: 25065551 |
[27] | 彭正萍. 植物氮素吸收、运转和分配调控机制研究[J]. 河北农业大学学报, 2019, 42(2):1-5. |
Peng ZP. Absorption, transportation and regulation of nitrogen element in plants[J]. Journal of HeBei Agricultural University, 2019, 42(2):1-5. | |
[28] |
Malagoli P, Laine P, Rossato L, et al. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape(Brassica napus)from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues[J]. Annals of Botany, 2005, 95(7):1187-1198.
doi: 10.1093/aob/mci131 URL |
[29] |
Kichey T, Hirel B, Heumez E, et al. In winter wheat(Triticum aestivum L.), post-anjournal nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers[J]. Field Crops Research, 102(1):22-32.
doi: 10.1016/j.fcr.2007.01.002 URL |
[30] |
Han YL, Song HX, Liao Q, et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus[J]. Plant Physiology, 2016, 170(3):1684-1698.
doi: 10.1104/pp.15.01377 URL |
[31] | Kant S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency[J]. Seminars in Cell & Developmental Biology, 2018, 74:89-96. |
[32] | 张振华. 作物硝态氮转运利用与氮素利用效率的关系[J]. 植物营养与肥料学报, 2017, 23(1):217-223. |
Zhang ZH. The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1):217-223. | |
[33] |
Lin SH, Kuo HF, Canivenc G, et al. Mutation of the Arabidopsis NRT1. 5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9):2514-2528.
doi: 10.1105/tpc.108.060244 URL |
[34] | Zheng Y, Drechsler N, Rausch C, et al. The Arabidopsis nitrate transporter NPF7. 3/NRT1. 5 is involved in lateral root development under potassium deprivation[J]. Plant Signaling & Behavior, 2016, 169(4):2832-2847. |
[35] | 李红. 拟南芥转运蛋白NRT1. 5/NPF7. 3调控K+在木质部装载的分子机制研究[D]. 北京:中国农业大学, 2016. |
Li H. Mechanism analyses of NRT1. 5/NPF7. 3-mediated K+ release into the xylem in Arabidopsis [D]. Beijing:China Agricultural University, 2016. | |
[36] |
Li JY, Fu YL, Pike SM, et al. The Arabidopsis nitrate transporter NRT1. 8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5):1633-1646.
doi: 10.1105/tpc.110.075242 URL |
[37] |
Fan SC, Lin CS, Hsu PK, et al. The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9):2750-2761.
doi: 10.1105/tpc.109.067603 URL |
[38] |
Wang YY, Tsay YF. Arabidopsis nitrate transporter NRT1. 9 is important in phloem nitrate transport[J]. The Plant Cell, 2011, 23(5):1945-1957.
doi: 10.1105/tpc.111.083618 URL |
[39] |
Liang G, Zhang Z. Reducing the nitrate content in vegetables through joint regulation of short-distance distribution and Long-distance transport[J]. Frontiers in Plant Science, 2020, 11:1079.
doi: 10.3389/fpls.2020.01079 URL |
[40] | 轩红梅, 王永华, 魏丽婷, 等. 麦幼苗叶片中硝酸盐转运蛋白NRT1和NRT2家族基因对氮饥饿响应的表达分析[J]. 麦类作物学报, 2014, 34(8):1019-1028. |
Xuan HM, Wang YH, Wei LT, et al. Transcription analysis of the genes encoding nitrate transporter NRT1 and NRT2 families in response to nitrogen starvation in wheat seedings leaves[J]. Journal of Triticeae Crop, 2014, 34(8):1019-1028. | |
[41] | 马翠. 水稻硝酸盐转运蛋白基因OsNRT1. 2和OsNRT1. 5超量表达材料的功能鉴定[D]. 南京:南京农业大学, 2011. |
Ma C. Characteristics of over-expression for nitrate transporter genes OsNRT1. 2 and OsNRT1. 5 in rice[D]. Nanjing:Nanjing Agricultural University, 2011. | |
[42] | Hua YP, Zhou T, Liao Q, et al. Genomics-assisted identification and characterization of the genetic variants underlying differential nitrogen use efficiencies in allotetraploid rapeseed genotypes[J]. G3(Bethesda, Md. ), 2018, 8(8):2757-2771. |
[43] | 梁桂红, 华营鹏, 周婷, 等. 甘蓝型油菜NRT1. 5和NRT1. 8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3):365-380. |
Liang GH, Hua YP, Zhou T, et al. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1. 5 and NRT1. 8 family genes in Brassica napus[J]. Acta Agronomica Sinica, 2019: 45(3):365-380.
doi: 10.3724/SP.J.1006.2019.84099 URL |
|
[44] | 李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5):982-993. |
Li CY, Kong XQ, Dong HZ. Nitrate uptake, transport and signaling regulation pathways[J]. Journal of Nuclear Agricultural Sciences, 2020: 34(5):982-993. | |
[45] | Chiu CC, Lin CS, Hsia AP, et al. Mutation of a nitrate transporter, AtNRT1. 4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant & Cell Physiology, 2004, 45(9):1139-1148. |
[46] | 余音, 廖琼, 吴智敏, 等. NRT1. 7基因突变对拟南芥硝酸盐再分配及氮效率的影响[J]. 湖南农业科学, 2017(3):1-4. |
Yu Y, Liao Q, Wu ZM, et al. Effects of NRT1. 7 gene mutation on nitrate redistribution and NUE of Arabidopsis[J]. Hunan Agricultural Sciences, 2017(3):1-4. | |
[47] |
Hsu PK, Tsay YF. Two phloem nitrate transporters, NRT1. 11 and NRT1. 12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2):844-856.
doi: 10.1104/pp.113.226563 URL |
[48] | 黄海涛, 张振华, 宋海星, 等. 基于液泡膜质子泵的硝态氮再利用研究进展[J]. 生态学杂志, 2012(3):731-737. |
Huang HT, Zhang ZH, Song HX, et al. Nitrate nitrogen reutilization based on proton pump of vacuole membrane:A review[J]. Chinese Journal of Ecology, 2012(3):731-737. | |
[49] |
David LC, Dechorgnat J, Berquin P, et al. Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2. 7[J]. Journal of Experimental Botany, 2014, 65(3):885-893.
doi: 10.1093/jxb/ert481 URL |
[50] |
Angeli AD, Monachello D, Ephritikhine G, et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles[J]. Nature, 2006, 442:939-942.
pmid: 16878138 |
[51] | 曾廷儒. 玉米CLC基因家族的表达分析及ZmCLCa基因的功能验证[D]. 秦皇岛:河北科技师范学院, 2016. |
Zeng YR. Gene expression analysis of CLC gene families and functional verification of ZmCLCa in maize[D]. Qinhuangdao:Hebei Normal University of Sicence and Technology, 2016. | |
[52] | Von der Fecht-Bartenbach J, Bogner M, Dynowski M. et al. CLC-b-mediated NO-3/H+ exchange across the tonoplast of Arabidopsis vacuoles[J]. Plant & Cell Physiology, 2010, 51(6):960-968. |
[53] |
Jossier M, Kroniewicz L, Dalmas F, et al. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance[J]. The Plant Journal, 2010, 64(4):563-576.
doi: 10.1111/tpj.2010.64.issue-4 URL |
[54] |
Okamoto M, Vidmar JJ, Glass AD. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision[J]. Plant Cell Physiology, 2003, 44(3):304-317.
doi: 10.1093/pcp/pcg036 URL |
[55] | Sorgonà A, Lupini A, Mercati F, et al. Nitrate uptake along the maize primary root:an integrated physiological and molecular approach[J]. Plant, Cell & Environment, 2011, 34(7):1127-1140. |
[56] |
Migocka M, Warzybok A, Kłobus G. The genomic organization and transcriptional pattern of genes encoding nitrate transporters 1(NRT1)in cucumber[J]. Plant and Soil, 2013, 364:1-2.
doi: 10.1007/s11104-012-1508-9 URL |
[57] |
Leblanc A, Renault H, Lecourt J, et al. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2. 1 and BnNrt1. 1 transporter gene expression in oilseed rape[J]. Plant Physiology, 2008, 146(4):1928-1940.
doi: 10.1104/pp.107.109363 URL |
[58] | Yin H, Mu SY, Li G. Function and regulation of nitrate transporters in plants[J]. Journal of Southern Agricculture, 2012, 43(4):425-430. |
[59] |
Wang M, Zhang P, Liu Q, et al. TaANR1-taBG1 and taWabi5-taNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots[J]. Plant Physiol, 2020, 182(3):1440-1453.
doi: 10.1104/pp.19.01482 URL |
[60] | Ruffel S, Krouk G, Ristova D, et al. Nitrogen economics of root foraging:transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. Demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45):18524-18529. |
[61] |
Poitout A, Crabos A, Petřík I, et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. The Plant Cell, 2018, 30(6):1243-1257.
doi: 10.1105/tpc.18.00011 pmid: 29764985 |
[62] |
Tabata R, Sumida K, Yoshii T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207):343-346.
doi: 10.1126/science.1257800 URL |
[63] |
Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polype-ptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3:17029.
doi: 10.1038/nplants.2017.29 pmid: 28319056 |
[64] |
Lejay L, Tillard P, Lepetit M, et al. Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants[J]. The Plant Journal, 1999, 18(5):509-519.
doi: 10.1046/j.1365-313X.1999.00480.x URL |
[65] |
Lejay L, Wirth J, Pervent M, et al. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynjournal[J]. Plant Physiology, 2008, 146(4):2036-2053.
doi: 10.1104/pp.107.114710 URL |
[66] |
Parker JL, Newstead S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1. 1[J]. Nature, 2014, 507(7490):68-72.
doi: 10.1038/nature13116 |
[67] |
Sun J, Bankston JR, Payandeh J, et al. Crystal structure of the plant dual-affinity nitrate transporter NRT1. 1[J]. Nature, 2014, 507(7490):73-77.
doi: 10.1038/nature13074 pmid: 24572362 |
[68] |
Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings[J]. The Plant Journal:for Cell and Molecular Biology, 2012, 69(6):978-995.
doi: 10.1111/tpj.2012.69.issue-6 URL |
[69] |
Menz J, Li Z, Schulze WX, et al. Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and(phospho-)proteome levels between nitrate and ammonium nutrition[J]. The Plant Journal, 2016, 88(5):717-734.
doi: 10.1111/tpj.2016.88.issue-5 URL |
[70] |
Huang L, Ban J, Han YT, et al. Multi-angle indicators system of non-point pollution source assessment in rural areas:a case study near Taihu Lake[J]. Environmental Management, 2013, 51(4):939-950.
doi: 10.1007/s00267-013-0024-x pmid: 23456193 |
[71] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000(1):1-6. |
Zhu ZL. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000(1):1-6. | |
[72] | 王准. 棉花氮高效种质筛选及评价指标的研究[D]. 北京:中国农业科学院, 2019. |
Wang Z. Screening and evaluation index of cotton nitrogen efficient germplasm[D]. Beijing:Chinese Academy of Agricultural Sciences, 2019. | |
[73] | 袁伟玲, 崔磊, 梅时勇, 等. 提高作物氮肥利用率的技术措施[J]. 现代农业科技, 2013(5):244-250. |
Yuan WL, Cui L, Mei SY, et al. Technology of increasing nitrogen use efficiency for crops[J]. Xiandai Nongye Keji, 2013(5):244-250. | |
[74] | 王火焰, 周健民. 根区施肥-提高肥料养分利用率和减少面源污染的关键和必需措施[J]. 土壤, 2013(5):785-790. |
Wang HY, Zhou JM. Root-zone fertilization--a key and necessary approach to improve fertilizer use efficiency and reduce non-point nource pollution from the cropland[J]. Soils, 2013(5):785-790. | |
[75] |
Luo Z, Liu H, Li WP, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density[J]. Field Crops Research, 2018, 218:150-157.
doi: 10.1016/j.fcr.2018.01.003 URL |
[76] | 代建龙, 董合忠, 段留生. 盐分差异分布下不同形态氮素对棉苗生长及主要营养元素吸收的影响[J]. 中国农业大学学报, 2012(4):9-15. |
Dai JL, Dong HZ, Duan LS. Effects of different nitrogen forms on seedling growth and main nutrient elements uptake under unequal salt distribution in cotton seedlings[J]. Journal of China Agricultural University, 2012(4):9-15. | |
[77] | 刘威, 周剑雄, 谢媛圆, 等. 控释尿素条施深度对鲜食玉米田间氨挥发和氮肥利用率的影响[J]. 应用生态学报, 2019, 30(4):1295-1302. |
Liu W, Zhou JX, Xie YY, et al. Ammonia volatilization and nitrogen use efficiency in the field of fresh edible maize as affected by different band fertilization depths of controlled-release urea[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1295-1302. | |
[78] | 王学霞, 曹兵, 梁红胜, 等. 控释氮肥与水溶肥配施减少设施土壤N2O排放的机理[J]. 植物营养与肥料学报, 2019(12):2084-2094. |
Wang XX, Cao B, Liang HS, et al. Combined appilcation of controlled-release nitrogen fertilizer and water-soluble fertilizer to reduce N2O emission in greenhouse soil [J]. Journal of Plant Nutrition and Fertilizers, 2019(12):2084-2094. | |
[79] | 欧立军, 康林玉, 赵激, 等. 作物氮素吸收与利用研究进展[J]. 北方园艺, 2018(7):151-156. |
Ou LJ, Kang LY, Zhao J, et al. Research progress in nitrogen uptake and utilization of crops[J]. Northern Horticulture, 2018(7):151-156. | |
[80] |
Zörb C, Ludewig U, Hawkesford MJ. Perspective on wheat yield and quality with reduced nitrogen supply[J]. Trends in Plant Science, 2018, 23(11):1029-1037.
doi: 10.1016/j.tplants.2018.08.012 URL |
[1] | LU Yu-fang, SHI Wei-ming. Rhizospheric Chemical Signals and Soil Nutrient Transformation [J]. Biotechnology Bulletin, 2020, 36(9): 14-24. |
[2] | LI Xiao-ting, YUAN Jian-zhen, WANG Fang-zhen, LI Ren-hui, CUI Yan-nong, MA Qing. Research Progress on the Function of NO3- Transporters in the Adaptation of Plants to Adversity [J]. Biotechnology Bulletin, 2019, 35(2): 156-162. |
[3] | ZHANG Yan, XIA Geng-shou, LAI Zhi-bing. Recent Advances in Molecular Mechanisms of Plant Responses Against Botrytis cinerea [J]. Biotechnology Bulletin, 2018, 34(2): 10-24. |
[4] | HAN Yi-juan, LU Guo-dong. Recent Understanding on the Interactions Between Rice and Magnaporthe oryzae [J]. Biotechnology Bulletin, 2018, 34(2): 25-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||