Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (2): 156-162.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0730
Previous Articles Next Articles
LI Xiao-ting, YUAN Jian-zhen, WANG Fang-zhen, LI Ren-hui, CUI Yan-nong, MA Qing
Received:
2018-08-15
Online:
2019-02-26
Published:
2019-03-07
LI Xiao-ting, YUAN Jian-zhen, WANG Fang-zhen, LI Ren-hui, CUI Yan-nong, MA Qing. Research Progress on the Function of NO3- Transporters in the Adaptation of Plants to Adversity[J]. Biotechnology Bulletin, 2019, 35(2): 156-162.
[1] Amtmann A, Armengaud P.Effects of N, P, K and S on metabolism:new knowledge gained from multi-level analysis[J]. Current Opinion in Plant Biology, 2009, 12(3):275-283. [2] 王宇通, 邵新庆, 黄欣颖, 等. 植物根系氮吸收过程的研究进展[J]. 草业科学, 2010, 27(7):105-111. [3] 李建勇, 龚继明. 植物硝酸根信号感受与传导途径[J]. 植物生理学报, 2011, 47:111-118. [4] Crawford NM, Glass ADM.Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10):389-395. [5] Wang YY, Hsu PK, Tsay YF.Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8):458-467. [6] Xu G, Fan X, Miller AJ.Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1):153-182. [7] Wang YY, Cheng YH, Chen KE, et al.Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1):85-122. [8] Dechorgnat J, Nguyen CT, Armengaud P, et al.From the soil to the seeds:the long journey of nitrate in plants[J]. Journal of Experimental Botany, 2011, 62(4):1349-1359. [9] 童依平, 蔡超, 刘全友, 等. 植物吸收硝态氮的分子生物学进展[J]. 植物营养与肥料学报, 2004, 10(4):433-440. [10] 李静, 张冰玉, 苏晓华, 等. 植物中的铵根及硝酸根转运蛋白研究进展[J]. 南京林业大学学报:自然科学版, 2012, 36(4):133-139. [11] 马清, 管超, 夏曾润, 等. 高等植物氮素转运蛋白研究进展[J]. 兰州大学学报:自然科学版, 2015, 51(2):217-227. [12] 张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 2016(2):141-149. [13] 宋田丽, 周建建, 徐晨曦, 等. 植物硝酸盐转运蛋白功能及表达调控研究进展[J]. 上海师范大学学报:自然科学版, 2017, 46(5):740-750. [14] Léran S, Varala K, Boyer JC, et al.A unified nomenclature of NITRATE TRANSPORTER 1 /PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1):5-9. [15] Tsay Y, Schroeder JI, Feldmann KA, et al . The herbcide sensitivity gene CHL1 of Arabidopsis encodes a nitrate inducible nitrate transporter[J]. Cell, 1993, 72(5):705-713. [16] Huang NC, Chiang CS, Crawford NM, et al.CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots[J]. The Plant Cell, 1996, 8(12):2183-2191. [17] Huang NC, Liu KH, Lo HJ, et al.Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-aflinity uptake[J]. The Plant Cell, 1999, 11(8):1381-1392. [18] Chiu CC, Lin CS, Hsia AP, et al.Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant & Cell Physiology, 2004, 45(9):1139-1148. [19] Lin SH, Kuo HF, Canivenc G, et al.Mutation of the Arabidopsis NRT1. 5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9):2514-2528 . [20] Li JY, Fu YL, Pike SM, et al.The Arabidopsis nitrate transporter NRT1. 8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5):1633-1646. [21] Wang YY, Tsay YF.Arabidopsis nitrate transporter NRT1. 9 is important in phloem nitrate transport[J]. The Plant Cell, 2011, 23(5):1945-1957. [22] Almagro A, Lin SH, Tsay YF.Characterization of the Arabidopsis nitrate transporter NRT1. 6 reveals a role of nitrate in early embryo development.[J]. The Plant Cell, 2008, 20(12):3289-3299. [23] Liu W, Sun Q, Wang K, et al.Nitrogen Limitation Adaptation(NLA)is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1. 7 in Arabidopsis[J]. New Phytologist, 2016, 214(2):734-744. [24] Hsu PK, Tsay YF.Two phloem nitrate transporters, NRT1. 11 and NRT1. 12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2):844-856. [25] Guiboileau A, Sormani R, Meyer C, et al.Senescence and death of plant organs:nutrient recycling and developmental regulation[J]. Comptes Rendus Biologies, 2010, 333(4):382-391. [26] Gojon A, Gaymard F.Keeping nitrate in the roots:an unexpected requirement for cadmium tolerance in plants[J]. Journal of Molecular Cell Biology, 2010, 2(6):299-301. [27] Li W, Wang Y, Okamoto M, et al.Dissection of the AtNRT2. 1:AtNRT2. 2 inducible high affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143(1):425-433. [28] Kiba T, Feria-Bourrellier A, Lafouge F, et al.The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24(1):245-258. [29] Lezhneva L, Kiba T, Feria BA, et al.The Arabidopsis nitrate transporter NRT2. 5 plays a role in nitrate acquisition and remobilization in nitrogen- starved plants[J]. The Plant Journal, 2014, 60(2):230-241. [30] Zheng D, Han X, An YI, et al.The nitrate transporter NRT2. 1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell & Environment, 2013, 36(7):1328-1337. [31] Liu KH, Tsay YF.Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. The EMBO Journal, 2003, 22(5):1005-1013. [32] Ho CH, Lin SH, Hu HC, et al.CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(3):1184-1194. [33] Fan X, Feng H, Tan Y, et al.A putative 6-transmembrane nitrate transporter OsNRT1. 1b plays a key role in rice under low nitrogen[J]. Journal of Integrative Plant Biology, 2016, 58(6):590-599. [34] Wang W, Hu B, Yuan D, et al.Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice[J]. The Plant Cell, 2018, 30(3):638-651. [35] Krouk G, Crawford NM, Coruzzi GM, et al.Nitrate signaling:adaptation to fluctuating environments[J]. Current Opinion in Plant Biology, 2010, 13(3):266-273. [36] Walch LP, Forde BG.Nitrate signaling mediated by the NRT1. 1 nitrate transporter antagonises L-glutamate- induced changes in root architecture[J]. The Plant Journal, 2008, 54(5):820-828. [37] Meng S, Peng JS, He YN, et al.Arabidopsis, NRT1. 5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level[J]. Molecular Plant, 2016, 9(3):461-470. [38] Drechsler N, Zheng Y, Bohner A, et al.Nitrate-dependent control of shoot K homeostasis by NPF7. 3/NRT1. 5 and SKOR in Arabidopsis[J]. Plant Physiology, 2015, 169(4):2832-2847. [39] Maathuis FJM.Physiological functions of mineral macronutrients[J]. Current Opinion in Plant Biology, 2009, 12(3):250-258. [40] Sharma T, Dreyer I, Riedelsberger J.The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana[J]. Frontiers in Plant Science, 2013, 4(2):224. [41] Forde B, Lorenzo H.The nutritional control of root development[J]. Plant & Soil, 2001, 232(1/2):51-68. [42] LoPez-Bucio J, Cruz-RamãRez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6(3):280-287. [43] Li H, Yu M, Du XQ, et al.NRT1. 5/NPF7. 3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis[J]. The Plant Cell, 2017, 29(8):2016-2026. [44] Zheng Y, Drechsler N, Rausch C, et al.The Arabidopsis nitrate transporter NPF7. 3/NRT1. 5 is involved in lateral root development under potassium deprivation[J]. Plant Signaling & Behavior, 2016, 11(5):2832-2847. [45] Wilkinson S, Davies WJ.ABA-based chemical signaling:the co-ordination of responses to stress in plants[J]. Plant Cell and Environment, 2002, 25(2):195-210. [46] Dodd IC, Tan LP, He J.Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation?[J]. Journal of Experimental Botany, 2003, 54:1281-1288. [47] Schahram B, Sharyar B, Peter W, et al.Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat[J]. European Journal of Agronomy, 2008, 28(1):1-7. [48] Guo FQ, Young J, Crawford NM.The nitrate transporter AtNRT1. 1(CHL1)functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J]. The Plant Cell, 2003, 15(1):107-117. [49] Chen CZ, Lv XF, Li JY, et al.Arabidopsis NRT1. 5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiology, 2012, 159:1582-1590. [50] Taochy C, Gaillard I, Ipotesi E, et al.The Arabidopsis root stele transporter NPF2. 3 contributes to nitrate translocation to shoots under salt stress[J]. Plant Journal for Cell & Molecular Biology, 2015, 83(3):466-479. [51] 荆红梅, 郑海雷, 赵中秋, 等. 植物对镉胁迫响应的研究进展[J]. 生态学报, 2001, 21(12):2125-2130. [52] Zhang GB, Yi HY, Gong JM.The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10):3984-3998. [53] Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al.GENEVESTIGATOR:Arabidopsis microarray database and analysis toolbox[J]. Plant Physiology, 2004, 136(1):2621-2632. |
[1] | GAO Yu-xuan, JIN Jing-chen, XU Li-shan, GAO Ya-Juan, ZHANG Wen-tian, LI Chen-chen, ZHANG Guo-wei, JIN Yong-sheng. Isolation of Halophilic Heterotrophic Nitrification-aerobic Denitrification Bacterium Bacillus megatherium N07 and Its Denitrification Characteristics [J]. Biotechnology Bulletin, 2022, 38(7): 247-257. |
[2] | MA Xin-xin, XU Yang, ZHAO Huan-huan, HUO Zhao-yan, WANG Shu-bin, ZHONG Feng-lin. Identification of Tomato 4CL Gene Family and Expression Analysis Under Nitrogen Treatment [J]. Biotechnology Bulletin, 2022, 38(4): 163-173. |
[3] | ZOU Liang-ping, GUO Xin, QI Deng-feng, ZHAI Min, LI Zhuang, ZHAO Ping-juan, PENG Ming, NIU Xing-kui. Anthocyanin Accumulation and Its Gene Expression Induced by Low Nitrogen Stress in Cassava Seedlings [J]. Biotechnology Bulletin, 2022, 38(2): 75-82. |
[4] | LIU Shuang, YAO Jia-ni, SHEN Cong, DAI Jin-xia. Fluorescent Quantitative PCR of nifH Gene and Diversity Analysis of Nitrogen-fixing Bacteria in the Rhizosphere Soil of Caragana spp. of Desert Grassland [J]. Biotechnology Bulletin, 2022, 38(12): 252-262. |
[5] | WU Lin-hui, GENG Bi-miao, WANG Yan-jie, ZHOU Guo-wei, SUN Qing-ye, ZHAO Qiong. Effects of Nitrogen Addition on the Abundance of Bacterial Phosphatase Encoding Genes in the Soil of Pinus sylvestris var. mongolica Plantation [J]. Biotechnology Bulletin, 2022, 38(11): 202-209. |
[6] | ZHAO Yang, SUN Hui-ming, LIN Hao-peng, LUO Ping-ting, ZHU Ya-ting, CHEN Qiong-hua, SHU Hu. Biosafety and Nitrogen Removal Performance of a Safe and Efficient Aerobic Denitrifying Pseudomonas stutzeri DZ11 [J]. Biotechnology Bulletin, 2022, 38(10): 226-234. |
[7] | TANG Jia-cheng, LIANG Yi-min, MA Jia-si, PENG Gui-xiang, TAN Zhi-yuan. Diversity and Growth Promotion of Endophytic Bacteria Isolated from Passiflora edulia Sims [J]. Biotechnology Bulletin, 2022, 38(1): 86-97. |
[8] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
[9] | ZHANG Qian, XUE Yu, HE Ling-xiao, WU Jiang, CHENG Yu-yuan, YANG Tie-zhao, DING Yong-le, XU Shi-xiao, XUE Gang. Effects of Planting Density,Amount of Nitrogen Application and Left Leaf Number on the Highlighting of Flavor Style in Qushou 1 [J]. Biotechnology Bulletin, 2021, 37(6): 24-35. |
[10] | XIANG Fen, LI Wei, LIU Hong-yan, YIN Xia, ZENG Ze-xuan, ZHOU Ling-yun. Influence of Nitrogen Fertilizer Reduction on the Structure of Bacterial Community in Tea Garden Soil [J]. Biotechnology Bulletin, 2021, 37(6): 49-57. |
[11] | TAN Hao, LIU Tian-hai, YAN Shi-jie, YU Yang, JIANG Lin, PENG Wei-hong. Impacts of Morel Cultivation on the Microbial Community and Physiochemical Characteristics in a Substratum of Desert Sand [J]. Biotechnology Bulletin, 2021, 37(11): 166-177. |
[12] | WEI Hua-ning, WANG Ling, LI Tao, WANG Na, WU Hua-lian, XIANG Wen-zhou. Effects of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Composition of Asterarcys sp. Accimated by Seawater [J]. Biotechnology Bulletin, 2021, 37(10): 34-44. |
[13] | ZHENG Ying-zhuan, LÜ Yan, YANG Dong-xu, LI Guo-wei, WANG Hong-yang, LI Can-hui. Study on the Identification of Potato Ploidy Using Flow Cytometry Based on Liquid Nitrogen Grinding Method [J]. Biotechnology Bulletin, 2021, 37(1): 282-288. |
[14] | LU Yu-fang, SHI Wei-ming. Rhizospheric Chemical Signals and Soil Nutrient Transformation [J]. Biotechnology Bulletin, 2020, 36(9): 14-24. |
[15] | LÜ Jun, PAN Hong-xiang, YU Cun. Screening,Identification and Phosphate-solubilizing Characteristics of Phosphate-solubilizing Paraburkholderia sp. from Pinus massoniana Rhizosphere Soil [J]. Biotechnology Bulletin, 2020, 36(9): 147-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||