Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 213-224.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1379
Previous Articles Next Articles
ZHANG Yong-lan(), XIE Li-nan()
Received:
2020-11-12
Online:
2021-06-26
Published:
2021-07-08
Contact:
XIE Li-nan
E-mail:buting0802@163.com;linanxie@nefu.edu.cn
ZHANG Yong-lan, XIE Li-nan. Advances in HKT1 Study on the Mechanism of Salt Tolerance in Plants[J]. Biotechnology Bulletin, 2021, 37(6): 213-224.
Fig. 1 Schematic diagram of HKT transport protein structure HKT transporters are membrane transporters with eight transmembrane domains and four P loops in the middle. The HKT family protein sequence is relatively conservative,but there are differences in amino acid composition in the first protein pore domain between the first and second transmembrane domains,and these differences determine the type of ion transported by the protein. In addition to the first protein pore domain,amino acids that affect ion transport properties are also found in other positions of the HKT transport protein,but they are not used as the basis for the classification of HKT family proteins
基因名称 Gene name | 物种 Species | 表达位置 Express position | 在植物中的功能 Function in plants | 异源表达时的功能 Function in heterologous expression |
---|---|---|---|---|
EcHKT1;2 | 蓝桉树 Eucalyptus camalduensis | 根、茎、叶均有表达[ | 转运K+[ | 大肠杆菌:K+转运 非洲爪蟾卵母细胞:Na+、K+、Rb+、Li+转运 |
McHKT1;1 | 冰叶日中花 Mesembryantemum crystallinum | 根:表皮细胞、维管束组织[ 叶:木质部薄壁细胞、导管细胞 | 根中表皮细胞转运K+进入细胞[ | 酿酒酵母:K+转运 非洲爪蟾卵母细胞[ |
TsHKT1;2 | 盐芥 Thellungiella salsuginea | 根和叶的维管束,木质部薄壁 细胞[ | 转运K+[ | 酿酒酵母[ |
SvHKT1;1 | 鼠尾栗 Sporobolus virginicus | 500 mmol/L氯化钠处理,根中表达量明显升高[ | 防止地上部分Na+积累过高[ | 酿酒酵母:Na+转运 |
AtHKT1;1 | 拟南芥 Arabidopsis thaliana | 根和叶的维管束,木质部薄壁 细胞[ | 在地上部分,将Na+转运到韧皮部中; 在根中,将Na+从木质部中转运出来[ | 大肠杆菌[ 酿酒酵母:Na+转运 |
OsHKT1;1 | 水稻 Oryza sativa L. | 根:表皮、分化为通气组织的内皮,根中柱(尤其是韧皮部) 叶:叶肉细胞和维管束[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞:Na+转运[ | |
OsHKT1;4 | 水稻 Oryza sativa L. | 叶鞘[ | 控制叶鞘叶片之间的Na+转移[ | |
OsHKT1;5 | 水稻 Oryza sativa L. | 根和叶的维管束[ | 在根中,将Na+从木质部中转运出来[ | 非洲爪蟾卵母细胞:Na+转运 |
TaHKT1;4 | 小麦 Triticum aestivum | 根、叶鞘和叶片[ | 将Na+从木质部中转运到木质部薄壁细胞[ | |
TaHKT1;5 | 小麦 Triticum aestivum | 根中表达,地上部分不表达[ | 将Na+从木质部中转运到木质部薄壁细胞[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ |
SlHKT1;1 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ | |
SlHKT1;2 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母、非洲爪蟾卵母细胞[ | |
HvHKT1;1 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 根中横向Na+运输,减少地上部分的Na+积累[ | 酿酒酵母、非洲爪蟾卵母细胞[ |
HvHKT1;5 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 将Na+从木质部薄壁细胞转运到木质部中[ | 非洲爪蟾卵母细胞:Na+转运[ |
Table 1 Classification of HKT transporters
基因名称 Gene name | 物种 Species | 表达位置 Express position | 在植物中的功能 Function in plants | 异源表达时的功能 Function in heterologous expression |
---|---|---|---|---|
EcHKT1;2 | 蓝桉树 Eucalyptus camalduensis | 根、茎、叶均有表达[ | 转运K+[ | 大肠杆菌:K+转运 非洲爪蟾卵母细胞:Na+、K+、Rb+、Li+转运 |
McHKT1;1 | 冰叶日中花 Mesembryantemum crystallinum | 根:表皮细胞、维管束组织[ 叶:木质部薄壁细胞、导管细胞 | 根中表皮细胞转运K+进入细胞[ | 酿酒酵母:K+转运 非洲爪蟾卵母细胞[ |
TsHKT1;2 | 盐芥 Thellungiella salsuginea | 根和叶的维管束,木质部薄壁 细胞[ | 转运K+[ | 酿酒酵母[ |
SvHKT1;1 | 鼠尾栗 Sporobolus virginicus | 500 mmol/L氯化钠处理,根中表达量明显升高[ | 防止地上部分Na+积累过高[ | 酿酒酵母:Na+转运 |
AtHKT1;1 | 拟南芥 Arabidopsis thaliana | 根和叶的维管束,木质部薄壁 细胞[ | 在地上部分,将Na+转运到韧皮部中; 在根中,将Na+从木质部中转运出来[ | 大肠杆菌[ 酿酒酵母:Na+转运 |
OsHKT1;1 | 水稻 Oryza sativa L. | 根:表皮、分化为通气组织的内皮,根中柱(尤其是韧皮部) 叶:叶肉细胞和维管束[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞:Na+转运[ | |
OsHKT1;4 | 水稻 Oryza sativa L. | 叶鞘[ | 控制叶鞘叶片之间的Na+转移[ | |
OsHKT1;5 | 水稻 Oryza sativa L. | 根和叶的维管束[ | 在根中,将Na+从木质部中转运出来[ | 非洲爪蟾卵母细胞:Na+转运 |
TaHKT1;4 | 小麦 Triticum aestivum | 根、叶鞘和叶片[ | 将Na+从木质部中转运到木质部薄壁细胞[ | |
TaHKT1;5 | 小麦 Triticum aestivum | 根中表达,地上部分不表达[ | 将Na+从木质部中转运到木质部薄壁细胞[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ |
SlHKT1;1 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母:Na+转运 非洲爪蟾卵母细胞[ | |
SlHKT1;2 | 番茄 Solanum lycopersicum | 根、茎、叶、花、果实中广泛表达[ | 酿酒酵母、非洲爪蟾卵母细胞[ | |
HvHKT1;1 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 根中横向Na+运输,减少地上部分的Na+积累[ | 酿酒酵母、非洲爪蟾卵母细胞[ |
HvHKT1;5 | 大麦 Hordeum vulgare L. | 根和叶的维管束[ | 将Na+从木质部薄壁细胞转运到木质部中[ | 非洲爪蟾卵母细胞:Na+转运[ |
Fig. 2 The role of HKT1 in Na+ long-distance transportation In Arabidopsis,the excess Na+ in the aerial part is transported to the phloem through the HKT1 protein,and then transported down to the root through the phloem,which is called a”recirculation” model. The HKT1 in the root transports Na+ from the xylem to the parenchyma cells of the xylem,and prevents Na+ from being transported upwards to the above-ground part through transpiration in the xylem. This is called the “exhaust” model. The positioning of HKT1 in the vascular bundles in the stem strongly supports Christa Testerink’s view of HKT1 in Arabidopsis Na + long-distance transportation,that is,in Arabidopsis,the “exhaust” model and the “recirculation” model may be at the same time
Fig. 3 Plant cell ion response strategy and HKT1 expression regulation pathway Some ion transporters related to salt stress in cells are located on the cell membrane and participate in the maintenance of sodium and potassium balance;some are located on the vesicle membrane and the vacuole membrane and participate in the retention of Na+ in the cell. The various factors involved in the regulation of HKT1 expression are complex. Plant hormones(cytokinins),second messengers(Ca+,ROS),and apparent regulatory factors(SUVH7)participate in the process at the same time to varying degrees,and ultimately affect HKT1 and the effect is also different. In addition to regulation during the expression process,HKT1 protein is directly inhibited by PP2C49 on the cell membrane
[1] |
Van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71(1):403-433.
doi: 10.1146/annurev-arplant-050718-100005 URL |
[2] | Zhang J, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynjournal Research, 2013, 115(1):1-22. |
[3] |
Wang Q, Guan C, Wang P, et al. The effect of AtHKT1;1 or AtSOS1 mutation on the expressions of Na+ or K+ transporter genes and Ion homeostasis in Arabidopsis thaliana under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5):523-534.
doi: 10.3390/ijms20030523 URL |
[4] |
Jarvis D, Ryu C, Beilstein M, et al. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula[J]. Molecular Biology and Evolution, 2014, 31(8):2094-2107.
doi: 10.1093/molbev/msu152 URL |
[5] | Li N, Du C, Ma B, et al. Functional analysis of ion transport properties and salt tolerance mechanisms of RtHKT1 from the recretohalophyte Reaumuria trigyna[J]. Plant & Cell Physiology, 2019, 60(1):85-106. |
[6] |
Ali A, Maggio A, Bressan RA, et al. Role and functional differences of HKT1-type transporters in plants under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5):101-112.
doi: 10.3390/ijms20010101 URL |
[7] |
Li N, Wang X, Ma B, et al. Expression of a Na/H antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2017, 218:109-120.
doi: 10.1016/j.jplph.2017.07.015 URL |
[8] |
Yokoi S, Quintero F, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. The Plant Journal, 2002, 30(5):529-539.
doi: 10.1046/j.1365-313X.2002.01309.x URL |
[9] | Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24):14150-14155. |
[10] |
Almeida P, Katschnig D, De Boer A. HKT transporters—State of the art[J]. International Journal of Molecular Sciences, 2013, 14(10):20359-20385.
doi: 10.3390/ijms141020359 pmid: 24129173 |
[11] |
Horie T, Hauser F, Schroeder J. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in Plant Science, 2009, 14(12):660-668.
doi: 10.1016/j.tplants.2009.08.009 URL |
[12] |
Henderson S, Dunlevy J, Wu Y, et al. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks[J]. The New Phytologist, 2018, 217(3):1113-1127.
doi: 10.1111/nph.14888 pmid: 29160564 |
[13] | Mäser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):6428-6433. |
[14] |
Ali A, Raddatz N, Aman R, et al. A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance[J]. Plant Physiology, 2016, 171(3):2112-2126.
doi: 10.1104/pp.16.00569 URL |
[15] |
Fairbairn D, Liu W, Schachtman D, et al. Characterisation of two distinct HKT1-like potassium transporters from eucalyptus camaldulensis[J]. Plant Molecular Biology, 2000, 43(4):515-525.
doi: 10.1023/A:1006496402463 URL |
[16] |
Su H, Balderas E, Vera-Estrella R, et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Molecular Biology, 2003, 52(5):967-980.
doi: 10.1023/A:1025445612244 URL |
[17] |
Ali Z, Park H, Ali A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl[J]. Plant Physiology, 2012, 158(3):1463-1474.
doi: 10.1104/pp.111.193110 URL |
[18] | Ali A, Yun D. Differential selection of sodium and potassium ions by TsHKT1;2[J]. Plant Signaling & Behavior, 2016, 11(8):e1206169. |
[19] |
Kawakami Y, Imran S, Katsuhara M, et al. Na+ transporter SvHKT1;1 from a halophytic turf grass is specifically upregulated by high Na concentration and regulates shoot Na concentration[J]. International Journal of Molecular Sciences, 2020, 21(17):232-243.
doi: 10.3390/ijms21010232 URL |
[20] |
Uozumi N, Kim E, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiology, 2000, 122(4):1249-1259.
doi: 10.1104/pp.122.4.1249 URL |
[21] |
Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells[J]. The Plant Journal, 2005, 44(6):928-938.
doi: 10.1111/tpj.2005.44.issue-6 URL |
[22] |
Campbell M, Bandillo N, Al Shiblawi F, et al. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice(Oryza sativa)for root sodium content[J]. PLoS Genetics, 2017, 13(6):e1006823.
doi: 10.1371/journal.pgen.1006823 URL |
[23] |
Imran S, Horie T, Katsuhara M. OsHKT1;1 expression and ion transport activity of rice variants[J]. Plants, 2019, 9(1):435-445.
doi: 10.3390/plants9040435 URL |
[24] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[25] |
Khan I, Mohamed S, Regnault T, et al. Constitutive contribution by the rice OsHKT1;4 Na+ transporter to xylem sap desalinization and low Na+ accumulation in young leaves under low as high external Na conditions[J]. Frontiers in Plant Science, 2020, 11:1130.
doi: 10.3389/fpls.2020.01130 URL |
[26] |
Plett D, Safwat G, Gilliham M, et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1[J]. PLoS One, 2010, 5(9):e12571.
doi: 10.1371/journal.pone.0012571 URL |
[27] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[28] |
James R, Blake C, Byrt C, et al. Major genes for Na+ exclusion, Nax1 and Nax2(wheat HKT1;4 and HKT1;5), decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions[J]. Journal of Experimental Botany, 2011, 62(8):2939-2947.
doi: 10.1093/jxb/err003 URL |
[29] |
Laurie S, Feeney K, Maathuis F, et al. A role for HKT1 in sodium uptake by wheat roots[J]. The Plant Journal, 2002, 32(2):139-149.
doi: 10.1046/j.1365-313X.2002.01410.x URL |
[30] |
Byrt C, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat[J]. The Plant Journal, 2014, 80(3):516-526.
doi: 10.1111/tpj.2014.80.issue-3 URL |
[31] |
Ben Amar S, Brini F, Sentenac H, et al. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters[J]. Journal of Experimental Botany, 2014, 65(1):213-222.
doi: 10.1093/jxb/ert361 URL |
[32] | Asins M, Villalta I, Aly M, et al. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+ /K+ homeostasis[J]. Plant, Cell & Environment, 2013, 36(6):1171-1191. |
[33] |
Van Bezouw R, Janssen E, Ashrafuzzaman M, et al. Shoot sodium exclusion in salt stressed barley(Hordeum vulgare L.)is determined by allele specific increased expression of HKT1;5[J]. Journal of Plant Physiology, 2019, 241:153029.
doi: 10.1016/j.jplph.2019.153029 URL |
[34] |
Haro R, Bañuelos M, Senn M, et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast[J]. Plant Physiology, 2005, 139(3):1495-1506.
doi: 10.1104/pp.105.067553 URL |
[35] |
Santa-María G, Danna C, Czibener C. High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways[J]. Plant Physiology, 2000, 123(1):297-306.
doi: 10.1104/pp.123.1.297 URL |
[36] |
Hill C, Jha D, Bacic A, et al. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains[J]. Molecular Plant, 2013, 6(2):350-368.
doi: 10.1093/mp/sss125 URL |
[37] | Yang C, Zhao L, Zhang H, et al. Evolution of physiological responses to salt stress in hexaploid wheat[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32):11882-11887. |
[38] |
Møller I, Gilliham M, Jha D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7):2163-2178.
doi: 10.1105/tpc.108.064568 URL |
[39] |
Kobayashi N, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4):657-670.
doi: 10.1111/tpj.13595 pmid: 28488420 |
[40] |
De Luca A, Pardo J, Leidi E. Pleiotropic effects of enhancing vacuolar K/H exchange in tomato[J]. Physiologia Plantarum, 2018, 163(1):88-102.
doi: 10.1111/ppl.2018.163.issue-1 URL |
[41] |
Rubio F, Gassmann W, Schroeder J. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science, 1995, 270(5242):1660-1663.
doi: 10.1126/science.270.5242.1660 URL |
[42] |
Julkowska M, Koevoets I, Mol S, et al. Genetic components of root architecture remodeling in response to salt stress[J]. The Plant Cell, 2017, 29(12):3198-3213.
doi: 10.1105/tpc.16.00680 URL |
[43] |
Rus A, Lee B, Muñoz-Mayor A, et al. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta[J]. Plant Physiology, 2004, 136(1):2500-2511.
doi: 10.1104/pp.104.042234 URL |
[44] |
Haseloff J. GFP variants for multispectral imaging of living cells[J]. Methods in Cell Biology, 1999, 58:139-151.
pmid: 9891379 |
[45] | An D, Chen J, Gao Y. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genetics, 2017,13(10):e1007086. |
[46] |
Essah P, Davenport R, Tester M. Sodium influx and accumulation in Arabidopsis[J]. Plant Physiology, 2003, 133(1):307-318.
doi: 10.1104/pp.103.022178 URL |
[47] |
Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9):2004-2014.
doi: 10.1093/emboj/cdg207 URL |
[48] | Davenport R, Muñoz-Mayor A, Jha D, et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidop-sis[J]. Plant, Cell & Environment, 2007, 30(4):497-507. |
[49] |
Wang L, Liu Y, Feng S, et al. AtHKT1 gene regulating K+ state in whole plant improves salt tolerance in transgenic tobacco plants[J]. Scientific Reports, 2018, 8(1):16585.
doi: 10.1038/s41598-018-34660-9 URL |
[50] |
Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. The Plant Journal, 2001, 27(2):129-138.
doi: 10.1046/j.1365-313x.2001.01077.x URL |
[51] |
Huang S, Spielmeyer W, Lagudah E, et al. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance[J]. Journal of Experimental Botany, 2008, 59(4):927-937.
doi: 10.1093/jxb/ern033 URL |
[52] |
Byrt C, Platten J, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1[J]. Plant Physiology, 2007, 143(4):1918-1928.
doi: 10.1104/pp.106.093476 URL |
[53] |
Zhu M, Shabala L, Cuin T, et al. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat[J]. Journal of Experimental Botany, 2016, 67(3):835-844.
doi: 10.1093/jxb/erv493 URL |
[54] |
Huang L, Kuang L, Wu L, et al. The HKT transporter HvHKT1;5 negatively regulates salt tolerance[J]. Plant Physiology, 2020, 182(1):584-596.
doi: 10.1104/pp.19.00882 URL |
[55] | Wang Z, Hong Y, Li Y, et al. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication[J]. Plant Biotechnology Journal, 2020, 124(3):177-185. |
[56] | Wang Z, Hong Y, Zhu G, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. The EMBO Journal, 2020, 39(10):e103256. |
[57] | Jaime-Pérez N, Pineda B, García-Sogo B, et al. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity[J]. Plant, Cell & Environment, 2017, 40(5):658-671. |
[58] |
Miller G, Suzuki N, Rizhsky L, et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses[J]. Plant Physiology, 2007, 144(4):1777-1785.
doi: 10.1104/pp.107.101436 URL |
[59] |
Kaye Y, Golani Y, Singer Y, et al. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis[J]. Plant Physiology, 2011, 157(1):229-241.
doi: 10.1104/pp.111.176883 URL |
[60] |
Chakraborty K, Bose J, Shabala L, et al. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species[J]. Journal of Experimental Botany, 2016, 67(15):4611-4625.
doi: 10.1093/jxb/erw236 URL |
[61] |
Jiang C, Belfield E, Mithani A, et al. ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis[J]. The EMBO Journal, 2012, 31(22):4359-4370.
doi: 10.1038/emboj.2012.273 URL |
[62] | Zhao R, Sun H, Mei C, et al. The Arabidopsis Ca(2+)-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth[J]. New Phytologist, 2011, 192(1):61-73. |
[63] |
Shkolnik D, Finkler A, Pasmanik-Chor M, et al. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6:A key regulator of Na + homeostasis during germination[J]. Plant Physiology, 2019, 180(2):1101-1118.
doi: 10.1104/pp.19.00119 URL |
[64] |
Yang M, Lu K, Zhao F, et al. Genome-wide association studies reveal the genetic basis of ionomic variation in rice[J]. The Plant Cell, 2018, 30(11):2720-2740.
doi: 10.1105/tpc.18.00375 URL |
[65] |
Shen Q, Fu L, Su T, et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4[J]. Plant Physiology, 2020, 183(4):1650-1662.
doi: 10.1104/pp.20.00196 URL |
[66] | Tran L, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51):20623-20628. |
[67] |
Mason M, Jha D, Salt D, et al. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots[J]. The Plant Journal, 2010, 64(5):753-763.
doi: 10.1111/tpj.2010.64.issue-5 URL |
[68] |
Brenner W, Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses[J]. BMC Plant Biology, 2012, 12:112.
doi: 10.1186/1471-2229-12-112 URL |
[69] |
Zhang H, Kim M, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions, 2008, 21(6):737-744.
doi: 10.1094/MPMI-21-6-0737 URL |
[70] | Chu ML, Chen PW, Meng SF, et al. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1[J]. Journal of Integrative Plant Biology, 2020. DOI: 10.111/jipb.13008. |
[71] |
Wang J, Nan N, Li N, et al. OsHKT1;5A DNA methylation reader-chaperone regulator-transcription factor complex activates expres-sion during salinity stress[J]. The Plant Cell, 2020, 32(11):3535-3558.
doi: 10.1105/tpc.20.00301 URL |
[72] | Busoms S, Paajanen P, Marburger S, et al. Arabidopsis thaliana fluctuating selection on migrant adaptive sodium transporter alleles in coastal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):E12443-E12452. |
[73] | Kotula L, Garcia Caparros P, Zörb C, et al. Improving crop salt tolerance using transgenic approaches:An update and physiological analysis[J]. Plant, Cell & Environment, 2020. 43(12):2932-2956. |
[74] |
Xu B, Waters S, Byrt C, et al. Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity[J]. Cellular and Molecular Life Sciences, 2018, 75(6):1133-1144.
doi: 10.1007/s00018-017-2716-5 URL |
[75] |
Amarasinghe S, Watson-Haigh N, Gilliham M, et al. The evolutionary origin of CIPK16:A gene involved in enhanced salt tolerance[J]. Molecular Phylogenetics and Evolution, 2016, 100:135-147.
doi: 10.1016/j.ympev.2016.03.031 URL |
[76] | Roy S, Huang W, Wang X, et al. A novel protein kinase involved in Na+ exclusion revealed from positional cloning[J]. Plant, Cell & Environment, 2013, 36(3):553-568. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[3] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[4] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[5] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[6] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[7] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[8] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[9] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
[10] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[11] | MA Ya-nan, LU Xu, WEI Yun-chun, LI Kang, WEI Ruo-nan, LI Sheng, MA Shao-ying. Identification and Tissue Specific Expression Analysis of AKR Gene Family in Grape [J]. Biotechnology Bulletin, 2021, 37(8): 141-151. |
[12] | LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6 [J]. Biotechnology Bulletin, 2021, 37(7): 137-145. |
[13] | LI E, HUANG Yong, MENG Yuan-yuan, LI Xuan, DU Guang-hui, LIU Fei-hu. Isolation and Identification of the Endophytic Fungi of‘Bama hemp’ Under Salt Stress and Its Diversity Analysis [J]. Biotechnology Bulletin, 2021, 37(10): 26-33. |
[14] | HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus [J]. Biotechnology Bulletin, 2020, 36(9): 64-74. |
[15] | PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria [J]. Biotechnology Bulletin, 2020, 36(9): 75-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||