Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 11-23.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0926
Previous Articles Next Articles
CHEN Meng-yan1,2(), BAI Jie2,3, KE Wen-can1,2, XU Dong-mei1,2, AI Lin4(), GUO Xu-sheng1,2()
Received:
2021-07-17
Online:
2021-09-26
Published:
2021-10-25
Contact:
AI Lin,GUO Xu-sheng
E-mail:chenmy2020@lzu.edu.cn;angel9522@163.com;guoxsh07@lzu.edu.cn
CHEN Meng-yan, BAI Jie, KE Wen-can, XU Dong-mei, AI Lin, GUO Xu-sheng. Research Advances in Silage Microbial Communities and Functions[J]. Biotechnology Bulletin, 2021, 37(9): 11-23.
苜蓿原料附生微生物 Epiphytic species of fresh alfalfa | 青贮后主要微生物 Microbial communities after ensiling | 微生物动态变化 Dynamics of microbial communities | 参考文献 Reference | |
---|---|---|---|---|
添加植物乳杆菌或布氏乳杆菌 | 属水平:泛菌属(Pantoea),乳杆菌属(Lactobacillus),肠球菌属(Enterobacter),链球菌属(Streptococcus) | 种水平:植物乳杆菌(L. plantarum),布氏乳杆菌(L. buchneri),副干酪乳杆菌(Lactobacillus paracasei),短乳杆菌(Lactobacillus brevis),戊糖乳杆菌(Lactobacillus pentosus),链球菌(Streptcoccus),蒙氏肠球菌(Enterococcus mundtii),(Enterococcus sulfureus),赫尔曼肠球菌(Enterococcus hermanniensis) | 种水平:对照组:植物乳杆菌(L. plantarum):14 d(19%),30 d(80%),60 d(65%),90 d(70%); 蒙氏肠球菌(Enterococcus mundtii):14 d(38%),未鉴定乳杆菌(unidentified Lactobacillus):14 d(21%),链球菌(Streptcoccus,):14 d(14%),副干酪乳杆菌(L. paracasei):14 d(8%);不明肠球菌(unidentified Enterococcus):90 d(11%); | [ |
种水平:布氏乳杆菌组:布氏乳杆菌(L. buchneri):14 d(38%),30 d(44%),60 d(0%);植物乳杆菌(L. plantarum):14 d(20%),30 d(23%),60 d(90%),90 d(78%);未鉴定乳杆:14d(32%),30d(39%); | ||||
种水平:植物乳杆菌组:植物乳杆菌(L. plantarum):14 d(93%),30 d(88%),60 d(74%),90 d(53%); 布氏乳杆菌(L. buchneri):14 d(0%),30 d(1%),60 d(8%),90 d(15%);未鉴定乳杆菌(unidentified Lactobacillus):30 d(8%),60 d(16%),90 d(21%);不明肠球菌(unidentified Enterococcus):90 d(5%); | ||||
添加乳酸菌AD-I,AD-II,AD-III AD-IV | 种水平:食窦魏斯氏菌(Weissella cibaria),成团泛菌(Pantoea agglomerans),阴沟肠杆菌(Enterobacter cloacae),蜡样芽胞杆菌(Bacillus cereus),巨大芽胞杆菌(Bacillus megaterium),耐久肠球菌(Enterococcus durans) | 种水平:植物乳杆菌(L. plantarum),苍白杆菌(Ochrobactrum lupini),破布子乳杆菌(Lactobacillus pobuzihi),乳酸片球菌(P. acidilactici) | 种水平:AD-I组和AD-II组:植物乳杆菌(L. plantarum)为优势菌种种水平:AD-III组和AD-IV组:乳酸片球菌(P. acidilactici)为优势菌种 | [ |
添加两种植物乳杆菌:(LPI 和 LPII)且原料为高水分萎蔫苜蓿 | 属水平:假单胞菌属(Pseudomonas),微小杆菌(Exiguobacterium),马赛菌(Massilla),动性球菌属(Planococcus),乳杆菌(Lactobacillus),魏斯氏菌属(Weissella) | 肠杆菌属(Enterobacter),梭状芽胞杆菌(Clostridium_XlVa),乳杆菌属(Lactobacillus),Garciella,魏斯氏菌属(Weissella),乳球菌属(Lactococcus),泛菌属(Pantoea),哈夫尼菌属(Hafnia) | 对照组:肠杆菌属(Enterobacter):30 d(38.54%),90 d(14.96%);Garciella:30 d(10.42%),90 d(34.95%); 魏斯氏菌属(Weissella):30 d(11.59%),乳球菌属(Lactococcus):30 d(9.59%),乳杆菌属(Lactobacillus):30 d(2.05%);梭状芽胞杆菌(Clostridium_XlVa):90 d(13.42%); | [ |
LpI组:乳杆菌属(Lactobacillus):30 d(57.82%);Garciella:90 d(38.38%),肠杆菌属(Enterobacter):90 d(11.60%),肠杆菌属(Enterobacter):90 d(11.60%),梭状芽胞杆菌(Clostridium_XlVa):90 d(6.67%); | ||||
LPII组:肠杆菌属(Enterobacter):30 d(10.20%),90 d(14.83%);乳杆菌属(Lactobacillus):30 d(82.19%); Garciella:90 d(24.04%),梭状芽胞杆菌(Clostridium_XlVa):90 d(0.67%); | ||||
接种干酪乳杆菌或纤维素酶 | 属水平:鞘脂菌属(Sphingobium)不动杆菌属(Acinetobacter),肠杆菌属(Enterobacter)梭菌(Clostridium),肠球菌属(Enterobacter),芽胞杆菌属(Bacillus),极少量的乳杆菌属(Lactobacillus),和肠球菌属(Enterococcus) | 乳杆菌属(Lactobacillus),肠球菌属(Enterococcus),假单孢菌属(Pseudomonas),乳球菌属(Lactococcus),片球菌属(Pediococcus),肠杆菌属(Enterobacter),魏斯氏菌属(weissella),科萨克氏菌属(Kosakonia) | 属水平:乳杆菌属(Lactobacillus):7 d(35.1%),乳球菌属(Lactococcus):7 d(31.2%),肠球菌属(Enterococcus):7 d(16.6%),片球菌属(Pediococcus):7 d(8.3%);乳杆菌属(Lactobacillus):56 d(75.1%),片球菌属(Pediococcus):56 d(9.3%),肠球菌属(Enterococcus):56 d(6.7%); | [ |
纤维素酶处理组:乳杆菌属(Lactobacillus):7 d(93.2%),明串珠菌科(Leuconostocaceae):7 d;乳杆菌属(Lactobacillus):56 d(83.93%),假单孢菌属(Pseudomonas):56 d(5.9%),肠球菌属(Enterococcus):56 d(8.4%); | ||||
干酪乳杆菌组:乳杆菌属(Lactobacillus):7 d(98.4%),56 d(94.17%);肠球菌属(Enterococcus):56 d(6.7%),假单孢菌属(Pseudomonas):56 d. | ||||
添加植物乳杆菌,戊糖片球菌和粪肠球菌 | 乳杆菌属(Lactobacillus),哈夫尼菌属(Hafnia),肠杆菌属(Enterobacter),沙雷氏菌属(Serratia) | 乳杆菌属(Lactobacillus),哈夫尼菌属(Hafnia),魏斯氏菌属(Weissella),泛菌属(Pantoea),肠杆菌属(Enterobacter),片球菌属(Pediococcus),拉恩氏菌属(Rahnella),沙雷氏菌属(Serratia),欧文氏菌属(Erwinia) | 种水平;对照组:蜂房哈夫尼菌(Hafnia alvei):1 d(32.5%),3 d(18.9%),7 d(15.5%),14 d(8.3%),60 d(5.2%);不明拉恩氏菌(Rahnella-unclassified):1 d(11.35%),3 d(3.7%),7 d(0.14%),14 d(0.28%),60 d(0.29%);戊糖片球菌(P. pentosaceus):1 d(1.3%),3 d(1.4%),7 d(2.1%),14 d(1.6%),60 d(2.0%);食窦魏斯氏菌(W. cibaria):1 d(3.9%),3 d(25.7%),7 d(23.5%),14 d(23.7%),60 d(22.0%); 植物乳杆菌(L. plantarum):1 d(0.46%),3 d(10.04%),7 d(19.06%),14 d(24.6%),60 d(27.7%); 戊糖乳杆菌(L. pentosus):1 d(0.29%),3 d(7.2%),7 d(7.7%),14 d(11.5%),60 d(6.3%);不明魏斯氏菌(unclassified Weissella):1 d(0.57%),3 d(7.7%),7 d(9.8%),14 d(11.02%),60 d(12.9%); | [ |
种水平:植物乳杆菌组:蜂房哈夫尼菌(Hafnia alvei):1 d(24.9%),3 d(16.2%),7 d(32.3%),14 d(10.5%),60 d(3.04%);不明拉恩氏菌(Rahnella-unclassified):1 d(4.1%),3 d(1.3%),7 d(0.33%),14 d(0.23%),60 d(0.63%);戊糖片球菌(P. pentosaceus):1 d(0.045%),3 d(0.119%),7 d(0.26%),14 d(0.19%),60 d(0.78%);食窦魏斯氏菌(W. cibaria):1 d(21.2%),3 d(27.9%),7 d(26.5%),14 d(21.1%),60 d(42.7%);植物乳杆菌(L. plantarum):1 d(7.2%),3 d(18.27%),7 d(9.55%),14 d(25.6%),60 d(18.3%);戊糖乳杆菌(L. pentosus):3 d(12.8%),7 d(5.5%),14 d(19.5%),60 d(9.4%);不明魏斯氏菌(unclassified Weissella):1 d(3.2%),3 d(6.2%),7 d(6.5%),14 d(7.7%),60 d(9.3%); | ||||
种水平;戊糖片球菌组:蜂房哈夫尼菌(H. alvei):1 d(19.3%),3 d(14.8%),7 d(19.9%),14 d(6.5%),60 d(2.1%);不明拉恩氏菌(Rahnella-unclassified):1 d(4.9%),3 d(1.3%),7 d(0.77%),14 d(0.32%),60 d(0.27%);戊糖片球菌(P. pentosaceus):1 d(3.07%),3 d(18.2%),7 d(11.6%),14 d(12.4%),60 d(17.9%);食窦魏斯氏菌(W. cibaria):1 d(52.2%),3 d(41.7%),7 d(28.9%),14 d(21.9%),60 d(30.5%);植物乳杆菌(L. plantarum):1 d(0.07%),3 d(1.85%),7 d(7.6%),14 d(20.4%),60 d(12.6%);戊糖乳杆菌(L. pentosus):1 d(0.04%),3 d(1.41%),7 d(4.32%),14 d(16.1%),60 d(9.1%);不明魏斯氏菌(unclassified Weissella):1 d(3.02%),3 d(6.33%),7 d(9.2%),14 d(8.1%),60 d(8.8%); | ||||
种水平;粪肠球菌组:蜂房哈夫尼菌(H. alvei):1 d(29.97%),3 d(32.23%),7 d(44.85%),14 d(13.1%),60 d(3.7%);不明拉恩氏菌(Rahnella-unclassified):1 d(6.4%),3 d(2.1%),7 d(0.14%),14 d(0.073%),60 d(0.28%);戊糖片球菌(P. pentosaceus):1 d(0.94%),3 d(0.46%),7 d(0.44%),14 d(0.64%),60 d(2.75%);食窦魏斯氏菌(W. cibaria):1 d(7.4%),3 d(21.5%),7 d(12.6%),14 d(24.02%),60 d(17.9%);植物乳杆菌(L. plantarum):1 d(0.12%),3 d(3.9%),7 d(7.9%),14 d(14.3%),60 d(23.9%); 戊糖乳杆菌(L. pentosus):1 d(0.032%),3 d(1.3%),7 d(5.2%),14 d(12.3%),60 d(12.6%);不明魏斯氏菌(unclassified Weissella):1 d(3.4%),3 d(7.7%),7 d(4.5%),14 d(8.7%),60 d(10.2%) |
Table 1 Composition and dynamics of bacterial community in alfalfa silage
苜蓿原料附生微生物 Epiphytic species of fresh alfalfa | 青贮后主要微生物 Microbial communities after ensiling | 微生物动态变化 Dynamics of microbial communities | 参考文献 Reference | |
---|---|---|---|---|
添加植物乳杆菌或布氏乳杆菌 | 属水平:泛菌属(Pantoea),乳杆菌属(Lactobacillus),肠球菌属(Enterobacter),链球菌属(Streptococcus) | 种水平:植物乳杆菌(L. plantarum),布氏乳杆菌(L. buchneri),副干酪乳杆菌(Lactobacillus paracasei),短乳杆菌(Lactobacillus brevis),戊糖乳杆菌(Lactobacillus pentosus),链球菌(Streptcoccus),蒙氏肠球菌(Enterococcus mundtii),(Enterococcus sulfureus),赫尔曼肠球菌(Enterococcus hermanniensis) | 种水平:对照组:植物乳杆菌(L. plantarum):14 d(19%),30 d(80%),60 d(65%),90 d(70%); 蒙氏肠球菌(Enterococcus mundtii):14 d(38%),未鉴定乳杆菌(unidentified Lactobacillus):14 d(21%),链球菌(Streptcoccus,):14 d(14%),副干酪乳杆菌(L. paracasei):14 d(8%);不明肠球菌(unidentified Enterococcus):90 d(11%); | [ |
种水平:布氏乳杆菌组:布氏乳杆菌(L. buchneri):14 d(38%),30 d(44%),60 d(0%);植物乳杆菌(L. plantarum):14 d(20%),30 d(23%),60 d(90%),90 d(78%);未鉴定乳杆:14d(32%),30d(39%); | ||||
种水平:植物乳杆菌组:植物乳杆菌(L. plantarum):14 d(93%),30 d(88%),60 d(74%),90 d(53%); 布氏乳杆菌(L. buchneri):14 d(0%),30 d(1%),60 d(8%),90 d(15%);未鉴定乳杆菌(unidentified Lactobacillus):30 d(8%),60 d(16%),90 d(21%);不明肠球菌(unidentified Enterococcus):90 d(5%); | ||||
添加乳酸菌AD-I,AD-II,AD-III AD-IV | 种水平:食窦魏斯氏菌(Weissella cibaria),成团泛菌(Pantoea agglomerans),阴沟肠杆菌(Enterobacter cloacae),蜡样芽胞杆菌(Bacillus cereus),巨大芽胞杆菌(Bacillus megaterium),耐久肠球菌(Enterococcus durans) | 种水平:植物乳杆菌(L. plantarum),苍白杆菌(Ochrobactrum lupini),破布子乳杆菌(Lactobacillus pobuzihi),乳酸片球菌(P. acidilactici) | 种水平:AD-I组和AD-II组:植物乳杆菌(L. plantarum)为优势菌种种水平:AD-III组和AD-IV组:乳酸片球菌(P. acidilactici)为优势菌种 | [ |
添加两种植物乳杆菌:(LPI 和 LPII)且原料为高水分萎蔫苜蓿 | 属水平:假单胞菌属(Pseudomonas),微小杆菌(Exiguobacterium),马赛菌(Massilla),动性球菌属(Planococcus),乳杆菌(Lactobacillus),魏斯氏菌属(Weissella) | 肠杆菌属(Enterobacter),梭状芽胞杆菌(Clostridium_XlVa),乳杆菌属(Lactobacillus),Garciella,魏斯氏菌属(Weissella),乳球菌属(Lactococcus),泛菌属(Pantoea),哈夫尼菌属(Hafnia) | 对照组:肠杆菌属(Enterobacter):30 d(38.54%),90 d(14.96%);Garciella:30 d(10.42%),90 d(34.95%); 魏斯氏菌属(Weissella):30 d(11.59%),乳球菌属(Lactococcus):30 d(9.59%),乳杆菌属(Lactobacillus):30 d(2.05%);梭状芽胞杆菌(Clostridium_XlVa):90 d(13.42%); | [ |
LpI组:乳杆菌属(Lactobacillus):30 d(57.82%);Garciella:90 d(38.38%),肠杆菌属(Enterobacter):90 d(11.60%),肠杆菌属(Enterobacter):90 d(11.60%),梭状芽胞杆菌(Clostridium_XlVa):90 d(6.67%); | ||||
LPII组:肠杆菌属(Enterobacter):30 d(10.20%),90 d(14.83%);乳杆菌属(Lactobacillus):30 d(82.19%); Garciella:90 d(24.04%),梭状芽胞杆菌(Clostridium_XlVa):90 d(0.67%); | ||||
接种干酪乳杆菌或纤维素酶 | 属水平:鞘脂菌属(Sphingobium)不动杆菌属(Acinetobacter),肠杆菌属(Enterobacter)梭菌(Clostridium),肠球菌属(Enterobacter),芽胞杆菌属(Bacillus),极少量的乳杆菌属(Lactobacillus),和肠球菌属(Enterococcus) | 乳杆菌属(Lactobacillus),肠球菌属(Enterococcus),假单孢菌属(Pseudomonas),乳球菌属(Lactococcus),片球菌属(Pediococcus),肠杆菌属(Enterobacter),魏斯氏菌属(weissella),科萨克氏菌属(Kosakonia) | 属水平:乳杆菌属(Lactobacillus):7 d(35.1%),乳球菌属(Lactococcus):7 d(31.2%),肠球菌属(Enterococcus):7 d(16.6%),片球菌属(Pediococcus):7 d(8.3%);乳杆菌属(Lactobacillus):56 d(75.1%),片球菌属(Pediococcus):56 d(9.3%),肠球菌属(Enterococcus):56 d(6.7%); | [ |
纤维素酶处理组:乳杆菌属(Lactobacillus):7 d(93.2%),明串珠菌科(Leuconostocaceae):7 d;乳杆菌属(Lactobacillus):56 d(83.93%),假单孢菌属(Pseudomonas):56 d(5.9%),肠球菌属(Enterococcus):56 d(8.4%); | ||||
干酪乳杆菌组:乳杆菌属(Lactobacillus):7 d(98.4%),56 d(94.17%);肠球菌属(Enterococcus):56 d(6.7%),假单孢菌属(Pseudomonas):56 d. | ||||
添加植物乳杆菌,戊糖片球菌和粪肠球菌 | 乳杆菌属(Lactobacillus),哈夫尼菌属(Hafnia),肠杆菌属(Enterobacter),沙雷氏菌属(Serratia) | 乳杆菌属(Lactobacillus),哈夫尼菌属(Hafnia),魏斯氏菌属(Weissella),泛菌属(Pantoea),肠杆菌属(Enterobacter),片球菌属(Pediococcus),拉恩氏菌属(Rahnella),沙雷氏菌属(Serratia),欧文氏菌属(Erwinia) | 种水平;对照组:蜂房哈夫尼菌(Hafnia alvei):1 d(32.5%),3 d(18.9%),7 d(15.5%),14 d(8.3%),60 d(5.2%);不明拉恩氏菌(Rahnella-unclassified):1 d(11.35%),3 d(3.7%),7 d(0.14%),14 d(0.28%),60 d(0.29%);戊糖片球菌(P. pentosaceus):1 d(1.3%),3 d(1.4%),7 d(2.1%),14 d(1.6%),60 d(2.0%);食窦魏斯氏菌(W. cibaria):1 d(3.9%),3 d(25.7%),7 d(23.5%),14 d(23.7%),60 d(22.0%); 植物乳杆菌(L. plantarum):1 d(0.46%),3 d(10.04%),7 d(19.06%),14 d(24.6%),60 d(27.7%); 戊糖乳杆菌(L. pentosus):1 d(0.29%),3 d(7.2%),7 d(7.7%),14 d(11.5%),60 d(6.3%);不明魏斯氏菌(unclassified Weissella):1 d(0.57%),3 d(7.7%),7 d(9.8%),14 d(11.02%),60 d(12.9%); | [ |
种水平:植物乳杆菌组:蜂房哈夫尼菌(Hafnia alvei):1 d(24.9%),3 d(16.2%),7 d(32.3%),14 d(10.5%),60 d(3.04%);不明拉恩氏菌(Rahnella-unclassified):1 d(4.1%),3 d(1.3%),7 d(0.33%),14 d(0.23%),60 d(0.63%);戊糖片球菌(P. pentosaceus):1 d(0.045%),3 d(0.119%),7 d(0.26%),14 d(0.19%),60 d(0.78%);食窦魏斯氏菌(W. cibaria):1 d(21.2%),3 d(27.9%),7 d(26.5%),14 d(21.1%),60 d(42.7%);植物乳杆菌(L. plantarum):1 d(7.2%),3 d(18.27%),7 d(9.55%),14 d(25.6%),60 d(18.3%);戊糖乳杆菌(L. pentosus):3 d(12.8%),7 d(5.5%),14 d(19.5%),60 d(9.4%);不明魏斯氏菌(unclassified Weissella):1 d(3.2%),3 d(6.2%),7 d(6.5%),14 d(7.7%),60 d(9.3%); | ||||
种水平;戊糖片球菌组:蜂房哈夫尼菌(H. alvei):1 d(19.3%),3 d(14.8%),7 d(19.9%),14 d(6.5%),60 d(2.1%);不明拉恩氏菌(Rahnella-unclassified):1 d(4.9%),3 d(1.3%),7 d(0.77%),14 d(0.32%),60 d(0.27%);戊糖片球菌(P. pentosaceus):1 d(3.07%),3 d(18.2%),7 d(11.6%),14 d(12.4%),60 d(17.9%);食窦魏斯氏菌(W. cibaria):1 d(52.2%),3 d(41.7%),7 d(28.9%),14 d(21.9%),60 d(30.5%);植物乳杆菌(L. plantarum):1 d(0.07%),3 d(1.85%),7 d(7.6%),14 d(20.4%),60 d(12.6%);戊糖乳杆菌(L. pentosus):1 d(0.04%),3 d(1.41%),7 d(4.32%),14 d(16.1%),60 d(9.1%);不明魏斯氏菌(unclassified Weissella):1 d(3.02%),3 d(6.33%),7 d(9.2%),14 d(8.1%),60 d(8.8%); | ||||
种水平;粪肠球菌组:蜂房哈夫尼菌(H. alvei):1 d(29.97%),3 d(32.23%),7 d(44.85%),14 d(13.1%),60 d(3.7%);不明拉恩氏菌(Rahnella-unclassified):1 d(6.4%),3 d(2.1%),7 d(0.14%),14 d(0.073%),60 d(0.28%);戊糖片球菌(P. pentosaceus):1 d(0.94%),3 d(0.46%),7 d(0.44%),14 d(0.64%),60 d(2.75%);食窦魏斯氏菌(W. cibaria):1 d(7.4%),3 d(21.5%),7 d(12.6%),14 d(24.02%),60 d(17.9%);植物乳杆菌(L. plantarum):1 d(0.12%),3 d(3.9%),7 d(7.9%),14 d(14.3%),60 d(23.9%); 戊糖乳杆菌(L. pentosus):1 d(0.032%),3 d(1.3%),7 d(5.2%),14 d(12.3%),60 d(12.6%);不明魏斯氏菌(unclassified Weissella):1 d(3.4%),3 d(7.7%),7 d(4.5%),14 d(8.7%),60 d(10.2%) |
组别 | 标志微生物种 Marker microorganism species |
---|---|
G | Lactobacillus paralimentarius,Lactobacillus farciminis,L. brevis,L. plantarum,Weissella paramesenteroides |
J | Leuconostoc pseudomesenteroides,Lactococcus lactis,L. brevis,L. plantarum |
X | Klebsiella oxytoca,Leuconostoc mesenteroides |
N | L. plantarum,Klebsiella oxytoca |
Q | L. brevis,L. plantarum,Sphingomonas paucimobilis |
T | L. brevis,L. buchneri,L. plantarum,Lactobacillus sakei,Leuconostoc citreum,Leuconostoc pseudomesenteroides |
S | L. plantarum,Leuconostoc citreum |
H | L. parabrevis,L. plantarum,Lactobacillus coryniformis,Lactobacillus parabuchneri,Lactobacillus rossiae |
K | L. plantarum,Leuconostoc pseudomesenteroides,Lactococcus lactis,L. brevis |
Table 2 Marker microorganisms of whole-plant corn silage in different climate zones(species)
组别 | 标志微生物种 Marker microorganism species |
---|---|
G | Lactobacillus paralimentarius,Lactobacillus farciminis,L. brevis,L. plantarum,Weissella paramesenteroides |
J | Leuconostoc pseudomesenteroides,Lactococcus lactis,L. brevis,L. plantarum |
X | Klebsiella oxytoca,Leuconostoc mesenteroides |
N | L. plantarum,Klebsiella oxytoca |
Q | L. brevis,L. plantarum,Sphingomonas paucimobilis |
T | L. brevis,L. buchneri,L. plantarum,Lactobacillus sakei,Leuconostoc citreum,Leuconostoc pseudomesenteroides |
S | L. plantarum,Leuconostoc citreum |
H | L. parabrevis,L. plantarum,Lactobacillus coryniformis,Lactobacillus parabuchneri,Lactobacillus rossiae |
K | L. plantarum,Leuconostoc pseudomesenteroides,Lactococcus lactis,L. brevis |
全株玉米原料附生微生物(属水平) Epiphytic species of whole-plant corn(genus) | 青贮后主要微生物 Microbial communities after ensiling | 微生物动态变化 Dynamics of microbial communities | 参考文献 Reference | |||
---|---|---|---|---|---|---|
添加剂 | 添加植物乳杆菌或布氏乳杆菌 | 农杆菌属(Agrobacterium),微杆菌属(Microbacterium),鞘氨醇杆菌属(Sphingobacterium),金黄杆菌属(Chryseobacterium),Candidatus Phytoplasma,不明肠杆菌属(unclassified Enterobacterales),不明变形菌属(unclassified Gammaproteobacteria),明串珠菌属(Leuconostoc),克雷伯菌属(Klebsiella),乳杆菌属(Lactobacillus),不明拟杆菌属(unclassified Bacteroidetes) | 布氏乳杆菌组:耐酸乳杆菌(Lactobacillus acetotolerans),硅乳酸杆菌(Lactobacillus silagei),发酵90 d出现臭乳酸杆菌(Lactobacillus odoratitofui),布氏乳杆菌(L. buchneri)含量显著降低植物乳杆菌组:耐酸乳杆菌(Lactobacillus acetotolerans),硅乳酸杆菌(Lactobacillus silagei),臭乳酸杆菌(Lactobacillus odoratitofui),类食品乳杆菌(L. paralimentarius),发酵90 d出现布氏乳杆菌(L. buchneri) | 种水平:对照组:耐酸乳杆菌(L. acetotolerans):90 d(48.9%),硅乳酸杆菌(L. silagei)90 d(45.3%) | [ | |
布氏乳杆菌组:发酵3 d,7 d,14 d,30 d,45 d布氏乳杆菌相对含量逐渐升高耐酸乳杆菌(L. acetotolerans):90 d(30.7%),硅乳酸杆菌(L. silagei):90 d(43.4%),臭乳酸杆菌(L. odoratitofui):90 d(9.3%),类食品乳杆菌(L. paralimentarius):90 d(9.1%),布氏乳杆菌(L. buchneri):90 d(1.4%),香肠乳杆菌(Lactobacillus farciminis):90 d(0.03%) 植物乳杆菌组:发酵3 d、7 d、14 d、30 d、45 d无布氏乳杆菌 耐酸乳杆菌(L. acetotolerans):90 d(56.6%),硅乳酸杆菌(L. silagei):90 d(14.2%),臭乳酸杆菌(L. odoratitofui):90 d(0.7%),类食品乳杆菌(L. paralimentarius):90 d(14.7%),布氏乳杆菌(L. buchneri):90 d(6.4%),香肠乳杆菌(L. farciminis):90 d(0.97%) | ||||||
添加布氏乳杆菌 | 假单胞菌属(Pseudomonas),泛菌属(Pantoea),农杆菌属(Agrobacterium),寡养单胞菌属(Stenotrophomonas) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),柠檬酸杆菌属(Citrobacter) | 对照组:乳杆菌属(Lactobacillus):7 d(44.5%),魏斯氏菌属(Weissella):7 d(23.3%),明串珠菌属(Leuconostoc):7 d(16.5%) 布氏乳杆菌组:乳杆菌属(Lactobacillus):7 d(44.5%),魏斯氏菌属(Weissella):7 d(23.3%),明串珠菌属(Leuconostoc):7 d(16.5%);乳杆菌属(Lactobacillus):30 d(63%);乳杆菌属(Lactobacillus):118 d(55.3%) | [ | ||
添加植物乳杆菌 | 不动杆菌属(Acinetobacter),克雷伯菌属(Klebsiella),魏斯氏菌属(Weissella),念珠菌属(Candida),鞘氨醇单胞菌属(Sphingomonas) | 乳杆菌属(Lactobacillus),念珠菌属(Candida) | 对照组:不动杆菌属(Acinetobacter):3 h(64%);泛菌属(Pantoea):3 h(15.3%);魏斯氏菌属(Weissella):5 h(52.1%),7 d(24.8%),30 d(30.4%)乳杆菌属(Lactobacillus):5 h(0.02%),1 d(1.3%),2 d(38.8%),90 d(94.8%);片球菌属(Pediococcus):2 d(13.8%);植物乳杆菌组:魏斯氏菌属(Weissella):5 h(62.7%),7 d(24.8%),30 d(30.4%);乳杆菌属(Lactobacillus):5 h(0.8%),1 d(24.2%),90 d(97.1%);片球菌属(Pediococcus):2 d(12.4%) | [ | ||
生长环境 | 中国西南地区农场窖储青贮玉米 | 成都平原地区:不动杆菌属(Acinetobacter),寡养单胞菌属(Stenotrophomonas),泛菌属(Pantoea),乳球菌属(Lactococcus),魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter)假单胞菌属(Pseudomonas) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),假单胞菌属(Pseudomonas) | [ | |
秦巴山区:不动杆菌属(Acinetobacter),魏斯氏菌属(Weissella),假单胞菌属(Pseudomonas),醋酸杆菌属(Acetobacter),乳杆菌属(Lactobacillus) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),魏斯氏菌属(Weissella) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | ||||
红崖丘陵山区:假单胞菌属(Pseudomonas),乳杆菌属(Lactobacillus),芽胞杆菌属(Bacillus), | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | ||||
云阳山区:假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter),芽胞杆菌属(Bacillus),泛菌属(Pantoea) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),八叠球菌属(Sporosarcina) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),八叠球菌属(Sporosarcina) | ||||
贵州山区:魏斯氏菌属(Weissella),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),片球菌属(Pediococcus) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),片球菌属(Pediococcus) | ||||
中国不同气候区 | 亚热带季风气候 | 贵州:魏斯氏菌属(Weissella),明串珠菌属(Leuconostoc),假丝酵母属(Candidatus Phytoplasma) | 乳杆菌属(Lactobacillus),魏斯氏菌属(Weissella),微小细菌属(Microbacterium) | 属水平:乳杆菌属(Lactobacillus),魏斯氏菌属(Weissella),(5-15 d);乳杆菌属(Lactobacillus)(45 d);乳杆菌属(Lactobacillus),微小细菌属(Microbacterium)(90 d) | [ | |
江苏:乳球菌属(Lactococcus),乳杆菌属(Lactobacillus),鞘脂杆菌属(Sphingobacterium),短杆菌属(Curtobacterium),不动杆菌属(Acinetobacter) | 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter),醋杆菌属(Acetobacter) | 属水平:乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella)(5 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter)(14 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),醋杆菌属(Acetobacter)主导发酵(45 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter),不动杆菌属(Acinetobacter),醋杆菌属(Acetobacter)(90 d) | ||||
温带大陆性气候 | 新疆:鞘氨醇杆菌属(Sphingobacterium),克雷伯氏菌属(Klebsiella)及金黄杆菌属(Chryseobacterium) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),克雷伯氏菌属(Klebsiella),片球菌属(Pediococcus) | 属水平:乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),魏斯氏菌属(Weissella)(5-14 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),魏斯氏菌属(Weissella),片球菌属(Pediococcus)(45 d);乳杆菌属(Lactobacillus)(90 d) | |||
内蒙古:葡萄球菌属(Staphylococcus),鞘氨醇单胞菌属(Sphingomonas),短杆菌属(Curtobacterium) | 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter) | 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter)(5-45 d) 乳杆菌属(Lactobacillus),农杆菌属(Agrobacterium)(90 d) | ||||
高原高山气候 | 青海:魏斯氏菌属(Weissella),明串珠菌属(Leuconostoc),假单胞菌属(Pseudomonas),克雷伯氏菌属(Klebsiella) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc) | 属水平:乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc)(5-14 d); 乳杆菌属(Lactobacillus)(45-90 d) | |||
西藏:魏斯氏菌属(Weissella),乳球菌属(Lactococcus),克雷伯氏菌属(Klebsiella) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter) | 属水平:乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),拉乌尔菌属(Raoultella),克雷伯氏菌属(Klebsiella)(5 d) 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),拉乌尔菌属(Raoultella),克雷伯氏菌属(Klebsiella),假单胞菌属(Pseudomonas)(14 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas)(45 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella)(90 d) |
Table 3 Effects of additives and growth environment on bacterial community compositions of whole-plant corn silage
全株玉米原料附生微生物(属水平) Epiphytic species of whole-plant corn(genus) | 青贮后主要微生物 Microbial communities after ensiling | 微生物动态变化 Dynamics of microbial communities | 参考文献 Reference | |||
---|---|---|---|---|---|---|
添加剂 | 添加植物乳杆菌或布氏乳杆菌 | 农杆菌属(Agrobacterium),微杆菌属(Microbacterium),鞘氨醇杆菌属(Sphingobacterium),金黄杆菌属(Chryseobacterium),Candidatus Phytoplasma,不明肠杆菌属(unclassified Enterobacterales),不明变形菌属(unclassified Gammaproteobacteria),明串珠菌属(Leuconostoc),克雷伯菌属(Klebsiella),乳杆菌属(Lactobacillus),不明拟杆菌属(unclassified Bacteroidetes) | 布氏乳杆菌组:耐酸乳杆菌(Lactobacillus acetotolerans),硅乳酸杆菌(Lactobacillus silagei),发酵90 d出现臭乳酸杆菌(Lactobacillus odoratitofui),布氏乳杆菌(L. buchneri)含量显著降低植物乳杆菌组:耐酸乳杆菌(Lactobacillus acetotolerans),硅乳酸杆菌(Lactobacillus silagei),臭乳酸杆菌(Lactobacillus odoratitofui),类食品乳杆菌(L. paralimentarius),发酵90 d出现布氏乳杆菌(L. buchneri) | 种水平:对照组:耐酸乳杆菌(L. acetotolerans):90 d(48.9%),硅乳酸杆菌(L. silagei)90 d(45.3%) | [ | |
布氏乳杆菌组:发酵3 d,7 d,14 d,30 d,45 d布氏乳杆菌相对含量逐渐升高耐酸乳杆菌(L. acetotolerans):90 d(30.7%),硅乳酸杆菌(L. silagei):90 d(43.4%),臭乳酸杆菌(L. odoratitofui):90 d(9.3%),类食品乳杆菌(L. paralimentarius):90 d(9.1%),布氏乳杆菌(L. buchneri):90 d(1.4%),香肠乳杆菌(Lactobacillus farciminis):90 d(0.03%) 植物乳杆菌组:发酵3 d、7 d、14 d、30 d、45 d无布氏乳杆菌 耐酸乳杆菌(L. acetotolerans):90 d(56.6%),硅乳酸杆菌(L. silagei):90 d(14.2%),臭乳酸杆菌(L. odoratitofui):90 d(0.7%),类食品乳杆菌(L. paralimentarius):90 d(14.7%),布氏乳杆菌(L. buchneri):90 d(6.4%),香肠乳杆菌(L. farciminis):90 d(0.97%) | ||||||
添加布氏乳杆菌 | 假单胞菌属(Pseudomonas),泛菌属(Pantoea),农杆菌属(Agrobacterium),寡养单胞菌属(Stenotrophomonas) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),柠檬酸杆菌属(Citrobacter) | 对照组:乳杆菌属(Lactobacillus):7 d(44.5%),魏斯氏菌属(Weissella):7 d(23.3%),明串珠菌属(Leuconostoc):7 d(16.5%) 布氏乳杆菌组:乳杆菌属(Lactobacillus):7 d(44.5%),魏斯氏菌属(Weissella):7 d(23.3%),明串珠菌属(Leuconostoc):7 d(16.5%);乳杆菌属(Lactobacillus):30 d(63%);乳杆菌属(Lactobacillus):118 d(55.3%) | [ | ||
添加植物乳杆菌 | 不动杆菌属(Acinetobacter),克雷伯菌属(Klebsiella),魏斯氏菌属(Weissella),念珠菌属(Candida),鞘氨醇单胞菌属(Sphingomonas) | 乳杆菌属(Lactobacillus),念珠菌属(Candida) | 对照组:不动杆菌属(Acinetobacter):3 h(64%);泛菌属(Pantoea):3 h(15.3%);魏斯氏菌属(Weissella):5 h(52.1%),7 d(24.8%),30 d(30.4%)乳杆菌属(Lactobacillus):5 h(0.02%),1 d(1.3%),2 d(38.8%),90 d(94.8%);片球菌属(Pediococcus):2 d(13.8%);植物乳杆菌组:魏斯氏菌属(Weissella):5 h(62.7%),7 d(24.8%),30 d(30.4%);乳杆菌属(Lactobacillus):5 h(0.8%),1 d(24.2%),90 d(97.1%);片球菌属(Pediococcus):2 d(12.4%) | [ | ||
生长环境 | 中国西南地区农场窖储青贮玉米 | 成都平原地区:不动杆菌属(Acinetobacter),寡养单胞菌属(Stenotrophomonas),泛菌属(Pantoea),乳球菌属(Lactococcus),魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter)假单胞菌属(Pseudomonas) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),假单胞菌属(Pseudomonas) | [ | |
秦巴山区:不动杆菌属(Acinetobacter),魏斯氏菌属(Weissella),假单胞菌属(Pseudomonas),醋酸杆菌属(Acetobacter),乳杆菌属(Lactobacillus) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),魏斯氏菌属(Weissella) | 魏斯氏菌属(Weissella),乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | ||||
红崖丘陵山区:假单胞菌属(Pseudomonas),乳杆菌属(Lactobacillus),芽胞杆菌属(Bacillus), | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter) | ||||
云阳山区:假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter),芽胞杆菌属(Bacillus),泛菌属(Pantoea) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),八叠球菌属(Sporosarcina) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),八叠球菌属(Sporosarcina) | ||||
贵州山区:魏斯氏菌属(Weissella),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),片球菌属(Pediococcus) | 乳杆菌属(Lactobacillus),醋酸杆菌属(Acetobacter),片球菌属(Pediococcus) | ||||
中国不同气候区 | 亚热带季风气候 | 贵州:魏斯氏菌属(Weissella),明串珠菌属(Leuconostoc),假丝酵母属(Candidatus Phytoplasma) | 乳杆菌属(Lactobacillus),魏斯氏菌属(Weissella),微小细菌属(Microbacterium) | 属水平:乳杆菌属(Lactobacillus),魏斯氏菌属(Weissella),(5-15 d);乳杆菌属(Lactobacillus)(45 d);乳杆菌属(Lactobacillus),微小细菌属(Microbacterium)(90 d) | [ | |
江苏:乳球菌属(Lactococcus),乳杆菌属(Lactobacillus),鞘脂杆菌属(Sphingobacterium),短杆菌属(Curtobacterium),不动杆菌属(Acinetobacter) | 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter),醋杆菌属(Acetobacter) | 属水平:乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella)(5 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),不动杆菌属(Acinetobacter)(14 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas),醋杆菌属(Acetobacter)主导发酵(45 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter),不动杆菌属(Acinetobacter),醋杆菌属(Acetobacter)(90 d) | ||||
温带大陆性气候 | 新疆:鞘氨醇杆菌属(Sphingobacterium),克雷伯氏菌属(Klebsiella)及金黄杆菌属(Chryseobacterium) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),克雷伯氏菌属(Klebsiella),片球菌属(Pediococcus) | 属水平:乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),魏斯氏菌属(Weissella)(5-14 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),魏斯氏菌属(Weissella),片球菌属(Pediococcus)(45 d);乳杆菌属(Lactobacillus)(90 d) | |||
内蒙古:葡萄球菌属(Staphylococcus),鞘氨醇单胞菌属(Sphingomonas),短杆菌属(Curtobacterium) | 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter) | 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter)(5-45 d) 乳杆菌属(Lactobacillus),农杆菌属(Agrobacterium)(90 d) | ||||
高原高山气候 | 青海:魏斯氏菌属(Weissella),明串珠菌属(Leuconostoc),假单胞菌属(Pseudomonas),克雷伯氏菌属(Klebsiella) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc) | 属水平:乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc)(5-14 d); 乳杆菌属(Lactobacillus)(45-90 d) | |||
西藏:魏斯氏菌属(Weissella),乳球菌属(Lactococcus),克雷伯氏菌属(Klebsiella) | 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),克雷伯氏菌属(Klebsiella),肠杆菌属(Enterobacter) | 属水平:乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),拉乌尔菌属(Raoultella),克雷伯氏菌属(Klebsiella)(5 d) 乳杆菌属(Lactobacillus),明串珠菌属(Leuconostoc),拉乌尔菌属(Raoultella),克雷伯氏菌属(Klebsiella),假单胞菌属(Pseudomonas)(14 d) 乳杆菌属(Lactobacillus),假单胞菌属(Pseudomonas)(45 d) 乳杆菌属(Lactobacillus),克雷伯氏菌属(Klebsiella)(90 d) |
[1] |
Muck R. Recent advances in silage microbiology[J]. AFSci, 2013, 22(1):3-15.
doi: 10.23986/afsci.6718 URL |
[2] |
Bernardes TF, Daniel JLP, Adesogan AT, et al. Silage review:Unique challenges of silages made in hot and cold regions[J]. J Dairy Sci, 2018, 101(5):4001-4019.
doi: S0022-0302(18)30323-0 pmid: 29685274 |
[3] |
Khota W, Pholsen S, Higgs D, et al. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant[J]. J Dairy Sci, 2016, 99(12):9768-9781.
doi: 10.3168/jds.2016-11180 URL |
[4] |
Case RJ, Boucher Y, Dahllöf I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J]. Appl Environ Microbiol, 2007, 73(1):278-288.
doi: 10.1128/AEM.01177-06 URL |
[5] |
Dolci P, Tabacco E, Cocolin L, et al. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films[J]. Appl Environ Microbiol, 2011, 77(21):7499-7507.
doi: 10.1128/AEM.05050-11 URL |
[6] |
Wu B, Zhang Q, Liu ZK, et al. Bacterial communities in alfalfa and corn silages produced in large-scale stack and bunker silos in China[J]. Grassl Sci, 2014, 60(4):247-251.
doi: 10.1111/grs.2014.60.issue-4 URL |
[7] |
Ni KK, Minh TT, Tu TTM, et al. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing[J]. Appl Microbiol Biotechnol, 2017, 101(4):1385-1394.
doi: 10.1007/s00253-016-7900-2 URL |
[8] |
Liu QH, Yang FY, Zhang JG, et al. Characteristics of Lactobacillus parafarraginis ZH1 and its role in improving the aerobic stability of silages[J]. J Appl Microbiol, 2014, 117(2):405-416.
doi: 10.1111/jam.12530 pmid: 24766633 |
[9] |
Dunière L, Sindou J, Chaucheyras-Durand F, et al. Silage processing and strategies to prevent persistence of undesirable microorganisms[J]. Animal Feed Sci Technol, 2013, 182(1/2/3/4):1-15.
doi: 10.1016/j.anifeedsci.2013.04.006 URL |
[10] | McDonald P, Henderson N, Heron S. The biochemistry of silage[M]. Marlow, Berkshire, Great Britain:Chalcombe Publications, 1991:30-36. |
[11] |
Yang F, Wang Y, Zhao S, et al. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition[J]. Front Microbiol, 2020, 11:1989.
doi: 10.3389/fmicb.2020.01989 URL |
[12] |
Bao W, Mi Z, Xu H, et al. Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters[J]. Sci Rep, 2016, 6:28358.
doi: 10.1038/srep28358 URL |
[13] |
Guo XS, Ke WC, Ding WR, et al. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri[J]. Sci Rep, 2018, 8(1):357.
doi: 10.1038/s41598-017-18348-0 pmid: 29321642 |
[14] |
Yang LL, Yuan XJ, Li JF, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant[J]. Bioresour Technol, 2019, 275:280-287.
doi: 10.1016/j.biortech.2018.12.067 URL |
[15] |
Agarussi MCN, Pereira OG, Silva VP, et al. Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions[J]. Mol Biol Rep, 2019, 46(1):451-460.
doi: 10.1007/s11033-018-4494-z URL |
[16] |
Zhang Q, Yu Z, Wang X, et al. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage[J]. Anim Sci J, 2018, 89(8):1085-1092.
doi: 10.1111/asj.12961 pmid: 29845704 |
[17] |
Bai J, Ding Z, Ke W, et al. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa:ensiling characteristics, dynamics of bacterial community and their functional shifts[J]. Microb Biotechnol, 2021, 14(3):1171-1182.
doi: 10.1111/mbt2.v14.3 URL |
[18] |
Graf K, Ulrich A, Idler C, et al. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism[J]. J Appl Microbiol, 2016, 120(6):1479-1491.
doi: 10.1111/jam.13114 pmid: 26923533 |
[19] |
Hu Z, Niu H, Tong Q, et al. The microbiota dynamics of alfalfa silage during ensiling and after air exposure, and the metabolomics after air exposure are affected by Lactobacillus casei and cellulase addition[J]. Front Microbiol, 2020, 11:519121.
doi: 10.3389/fmicb.2020.519121 URL |
[20] | 柯文灿. 不同调控措施影响苜蓿青贮发酵品质的作用机制研究[D]. 兰州:兰州大学, 2021. |
Ke WC. Study on the mechanism of different regulatory measures on alfalfa silage fermentation quality[D]. Lanzhou:Lanzhou University, 2021. | |
[21] |
Ferraretto LF, Shaver RD, Luck BD. Silage review:Recent advances and future technologies for whole-plant and fractionated corn silage harvesting[J]. J Dairy Sci, 2018, 101(5):3937-3951.
doi: S0022-0302(18)30319-9 pmid: 29685271 |
[22] |
Khan NA, Yu P, Ali M, et al. Nutritive value of maize silage in relation to dairy cow performance and milk quality[J]. J Sci Food Agric, 2015, 95(2):238-252.
doi: 10.1002/jsfa.6703 URL |
[23] |
Jin L, Dunière L, Lynch JP, et al. Impact of ferulic acid esterase-producing lactobacilli and fibrolytic enzymes on ensiling and digestion kinetics of mixed small-grain silage[J]. Grass Forage Sci, 2017, 72(1):80-92.
doi: 10.1111/gfs.2017.72.issue-1 URL |
[24] |
Gharechahi J, Kharazian ZA, Sarikhan S, et al. The dynamics of the bacterial communities developed in maize silage[J]. Microb Biotechnol, 2017, 10(6):1663-1676.
doi: 10.1111/1751-7915.12751 pmid: 28696065 |
[25] |
Guan H, Yan Y, Li X, et al. Microbial communities and natural fermentation of corn silages prepared with farm bunker-Silo in Southwest China[J]. Bioresour Technol, 2018, 265:282-290.
doi: 10.1016/j.biortech.2018.06.018 URL |
[26] |
Xu D, Ding W, Ke W, et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri[J]. Front Microbiol, 2018, 9:3299.
doi: 10.3389/fmicb.2018.03299 URL |
[27] |
Guan H, Shuai Y, Yan YH, et al. Microbial community and fermentation dynamics of corn silage prepared with heat-resistant lactic acid bacteria in a hot environment[J]. Microorganisms, 2020, 8(5):719.
doi: 10.3390/microorganisms8050719 URL |
[28] | 许冬梅. 不同气候区及乳酸菌影响玉米青贮发酵的微生物组与代谢组学机制研究[D]. 兰州:兰州大学, 2021. |
Xu DM. Mechanisms of microbial and metabolome on fermentation of corn silage effected by climate zones and inoculations[D]. Lanzhou:Lanzhou University, 2021. | |
[29] |
Drouin P, Tremblay J, Chaucheyras-Durand F. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination[J]. Microorganisms, 2019, 7(12):595.
doi: 10.3390/microorganisms7120595 URL |
[30] |
Li YB, Nishino N. Effects of inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri on fermentation, aerobic stability and microbial communities in whole crop corn silage[J]. Grassland Sci, 2011, 57(4):184-191.
doi: 10.1111/grs.2011.57.issue-4 URL |
[31] | 陶莲, 孙启忠, 玉柱, 等. 乳酸菌添加剂对全株玉米和苜蓿青贮品质的影响[J]. 中国奶牛, 2009(2):13-16. |
Tao L, Sun QZ, Yu Z, et al. Effect of LAB additives on the quality of whole crop corn and alfalfa silages[J]. China Dairy Cattle, 2009(2):13-16. | |
[32] |
Xu S, Yang J, Qi M, et al. Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage1[J]. J Anim Sci, 2019, 97(3):1273-1285.
doi: 10.1093/jas/skz021 URL |
[33] |
Keshri J, Chen Y, Pinto R, et al. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant[J]. Appl Microbiol Biotechnol, 2018, 102(9):4025-4037.
doi: 10.1007/s00253-018-8903-y URL |
[34] |
Xu D, Ding Z, Wang M, et al. Characterization of the microbial community, metabolome and biotransformation of phenolic compounds of sainfoin(Onobrychis viciifolia)silage ensiled with or without inoculation of Lactobacillus plantarum[J]. Bioresour Technol, 2020, 316:123910.
doi: 10.1016/j.biortech.2020.123910 URL |
[35] |
Wang Y, Wang C, Zhou W, et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage[J]. Front Microbiol, 2018, 9:1817.
doi: 10.3389/fmicb.2018.01817 pmid: 30127780 |
[36] |
Guo G, Yuan XJ, Li LX, et al. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau[J]. Grassl Sci, 2014, 60(4):240-246.
doi: 10.1111/grs.2014.60.issue-4 URL |
[37] |
Ding Z, Bai J, Xu D, et al. Microbial community dynamics and natural fermentation profiles of ensiled alpine grass Elymus nutans prepared from different regions of the Qinghai-Tibetan Plateau[J]. Front Microbiol, 2020, 11:855.
doi: 10.3389/fmicb.2020.00855 URL |
[38] |
Zi XJ, Li M, Yu DG, et al. Natural fermentation quality and bacterial community of 12 Pennisetum sinese varieties in Southern China[J]. Front Microbiol, 2021, 12:627820. DOI: 10.3389/fmicb.2021.627820.
doi: 10.3389/fmicb.2021.627820 URL |
[39] |
Nazar M, Wang S, Zhao J, et al. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile Sudan grass[J]. World J Microbiol Biotechnol, 2021, 37(2):27.
doi: 10.1007/s11274-020-02991-3 URL |
[40] |
Sun L, Bai CS, Xu HW, et al. Succession of bacterial community during the initial aerobic, intense fermentation, and stable phases of whole-plant corn silages treated with lactic acid bacteria suspensions prepared from other silages[J]. Front Microbiol, 2021, 12:655095. DOI: 10.3389/fmicb.2021.655095.
doi: 10.3389/fmicb.2021.655095 URL |
[41] |
Liu B, Huan H, Gu H, et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages[J]. Bioresour Technol, 2019, 273:212-219.
doi: 10.1016/j.biortech.2018.10.041 URL |
[42] |
Keshri J, Chen Y, Pinto R, et al. Bacterial dynamics of wheat silage[J]. Front Microbiol, 2019, 10:1532.
doi: 10.3389/fmicb.2019.01532 URL |
[43] |
Hu W, Schmidt RJ, McDonell EE, et al. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents[J]. J Dairy Sci, 2009, 92(8):3907-3914.
doi: 10.3168/jds.2008-1788 pmid: 19620673 |
[44] | Koc F, Aksoy SO, Okur AA, et al. Effect of pre-fermented juice, Lactobacillus plantarum and Lactobacillus buchneri on the fermentation characteristics and aerobic stability of high dry matter alfalfa bale silage[J]. Journal of Animal and Plant Sciences, 2017, 27(5):1766-1773. |
[45] |
Zhang YX, Ke WC, Bai J, et al. The effect of Pediococcus acidilactici J17 with high-antioxidant activity on antioxidant, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents[J]. Animal Feed Sci Technol, 2020, 268:114614.
doi: 10.1016/j.anifeedsci.2020.114614 URL |
[46] |
Zhang YX, Ke WC, Vyas D, et al. Antioxidant status, chemical composition and fermentation profile of alfalfa silage ensiled at two dry matter contents with a novel Lactobacillus plantarum strain with high-antioxidant activity[J]. Animal Feed Sci Technol, 2021, 272:114751.
doi: 10.1016/j.anifeedsci.2020.114751 URL |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[3] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[4] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[7] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[8] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[9] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[10] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[11] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[12] | HU Ming-yue, YANG Yu, GUO Yang-dong, ZHANG Xi-chun. Functional Analysis of SlMYB96 Gene in Tomato Under Cold Stress [J]. Biotechnology Bulletin, 2023, 39(4): 236-245. |
[13] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[14] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[15] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||