Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 169-178.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1474
Previous Articles Next Articles
GAO Jing-xi(), GAO Ke-xing, LU Fei, JI Feng, GUO Zhi-gang()
Received:
2020-12-02
Online:
2021-10-26
Published:
2021-11-12
Contact:
GUO Zhi-gang
E-mail:1669522990@qq.com;guo@njnu.edu.cn
GAO Jing-xi, GAO Ke-xing, LU Fei, JI Feng, GUO Zhi-gang. Prediction of SARS-CoV-2 S Protein B Cell Antigenic Epitope Cross-immunizing with SARS-CoV[J]. Biotechnology Bulletin, 2021, 37(10): 169-178.
毒株Isolate | 序列号Accession no. | 宿主Host | 国家或地区Country or area |
---|---|---|---|
WHU01 | QHD43416.1 | Human | China |
WHU02 | QHO62112.1 | Human | China |
Peru-10 | QIS60288.1 | Human | Peru |
SP02 | QIG55994.1 | Human | Brazil |
NC0025 | QJA17752.1 | Human | USA:NC |
MA3653 | QIZ16497.1 | Human | USA:MA |
CHUKtc55NS | ABD73002.1 | Bat | China:Hong Kong |
CHUKtc51L | ABD73000.1 | Bat | China:Hong Kong |
CHUKtc46NP | ABD72997.1 | Bat | China:Hong Kong |
ExoN1 | AGT21273.1 | Human | USA:Nashville,TN |
TC3 | AAP97882.1 | Human | China:Taiwan |
QXC1 | AAR86788.1 | Human | China |
NV2020 | AVN89453.1 | Camelus dromedarius | Nigeria |
CIRAD-HKU785 | AVN89344.1 | Camelus dromedarius | Burkina Faso |
CIRAD-HKU213 | AVN89324.1 | Camelus dromedarius | Morocco |
AAU-EPHI-HKU4458 | AVN89313.1 | Camelus dromedarius | Ethiopia |
BN1 | AOG74783.1 | Human | Germany |
SC9724 | QEO75985.1 | Human | USA |
SC0768 | QEG03748.1 | Human | USA |
SI17244 | AYN64561.1 | Human | Thailand |
BJ01-p9 | AMN88694.1 | Human | China |
BJ01-p3 | AMN88686.1 | Human | China |
Caen1 | ADN03339.1 | Human | France |
Table 1 Coronavirus strains used in this study
毒株Isolate | 序列号Accession no. | 宿主Host | 国家或地区Country or area |
---|---|---|---|
WHU01 | QHD43416.1 | Human | China |
WHU02 | QHO62112.1 | Human | China |
Peru-10 | QIS60288.1 | Human | Peru |
SP02 | QIG55994.1 | Human | Brazil |
NC0025 | QJA17752.1 | Human | USA:NC |
MA3653 | QIZ16497.1 | Human | USA:MA |
CHUKtc55NS | ABD73002.1 | Bat | China:Hong Kong |
CHUKtc51L | ABD73000.1 | Bat | China:Hong Kong |
CHUKtc46NP | ABD72997.1 | Bat | China:Hong Kong |
ExoN1 | AGT21273.1 | Human | USA:Nashville,TN |
TC3 | AAP97882.1 | Human | China:Taiwan |
QXC1 | AAR86788.1 | Human | China |
NV2020 | AVN89453.1 | Camelus dromedarius | Nigeria |
CIRAD-HKU785 | AVN89344.1 | Camelus dromedarius | Burkina Faso |
CIRAD-HKU213 | AVN89324.1 | Camelus dromedarius | Morocco |
AAU-EPHI-HKU4458 | AVN89313.1 | Camelus dromedarius | Ethiopia |
BN1 | AOG74783.1 | Human | Germany |
SC9724 | QEO75985.1 | Human | USA |
SC0768 | QEG03748.1 | Human | USA |
SI17244 | AYN64561.1 | Human | Thailand |
BJ01-p9 | AMN88694.1 | Human | China |
BJ01-p3 | AMN88686.1 | Human | China |
Caen1 | ADN03339.1 | Human | France |
Fig.4 Structure prediction of whole and target region of S protein in Wuhan-Hu-1 strain A: Structure prediction of S protein. B: Local magnification structure of target region
参数Parameter | 位置Location |
---|---|
柔韧性 Flexibility(Karplus-Schulz) | 946-950,952-956,964-969,982-987,994,996-1 005,1 008-1 011,1 028-1 030,1 034-1 039,1 045,1 053-1 056,1 070-1 077,1 084-1 086,1 090-1 093,1 097-1 100,1 105-1 108,1 116-1 125,1 135-1 155,1 157-1 164,1 166-1 172,1 180-1 186,1 191-1 196,1 202-1 207 |
亲水性 Hydrophilicity(Kyte-Doolittle) | 951,954-955,962,966,983-985,987,992,1 000,1 002,1 004,1 007-1 008,1 011,1 016,1 028,1 036-1 039,1 054-1 056,1 068-1 076,1 085,1 088-1 090,1 099,1 105-1 111,1 117-1 118,1 136-1 137,1 140-1 144,1 146-1 162,1 179-1 186,1 189,1 192-1 193,1 203-1 210 |
表面可能性 Surface probability(Emini) | 951,954-955,962,966,983-985,987,992,1 000,1 002,1 004,1 007-1 008,1 011,1 016,1 028,1 036-1 039,1 054-1 056,1 068-1 076,1 085,1 088-1 090,1 099,1 105-1 111,1 117-1 118,1 136-1 137,1 140-1 144,1 146-1 162,1 179-1 186,1 189,1 192-1 193,1 203-1 210 |
抗原指数 Antigenic index(Jameson-Wolf) | 944,947-950,952-956,966-967,980-993,995-1 000,1 002-1003,1 011,1 014,1 016-1 022,1 028-1 031,1 035-1 048,1 054-1 058,1 070-1 077,1 082-1 099,1 106- 1 111,1 116-1 119,1 123-1 126,1 136-1 171,1 179-1 199,1 201-1 208 |
Table 2 Flexibility regions, hydrophilicity, surface probability and antigenic index of S protein target region in Wuhan-Hu-1 strain
参数Parameter | 位置Location |
---|---|
柔韧性 Flexibility(Karplus-Schulz) | 946-950,952-956,964-969,982-987,994,996-1 005,1 008-1 011,1 028-1 030,1 034-1 039,1 045,1 053-1 056,1 070-1 077,1 084-1 086,1 090-1 093,1 097-1 100,1 105-1 108,1 116-1 125,1 135-1 155,1 157-1 164,1 166-1 172,1 180-1 186,1 191-1 196,1 202-1 207 |
亲水性 Hydrophilicity(Kyte-Doolittle) | 951,954-955,962,966,983-985,987,992,1 000,1 002,1 004,1 007-1 008,1 011,1 016,1 028,1 036-1 039,1 054-1 056,1 068-1 076,1 085,1 088-1 090,1 099,1 105-1 111,1 117-1 118,1 136-1 137,1 140-1 144,1 146-1 162,1 179-1 186,1 189,1 192-1 193,1 203-1 210 |
表面可能性 Surface probability(Emini) | 951,954-955,962,966,983-985,987,992,1 000,1 002,1 004,1 007-1 008,1 011,1 016,1 028,1 036-1 039,1 054-1 056,1 068-1 076,1 085,1 088-1 090,1 099,1 105-1 111,1 117-1 118,1 136-1 137,1 140-1 144,1 146-1 162,1 179-1 186,1 189,1 192-1 193,1 203-1 210 |
抗原指数 Antigenic index(Jameson-Wolf) | 944,947-950,952-956,966-967,980-993,995-1 000,1 002-1003,1 011,1 014,1 016-1 022,1 028-1 031,1 035-1 048,1 054-1 058,1 070-1 077,1 082-1 099,1 106- 1 111,1 116-1 119,1 123-1 126,1 136-1 171,1 179-1 199,1 201-1 208 |
区段 Sequence number | 起始位置 Initial position | 终止位置 Terminal position | B细胞抗原表位氨基酸序列 Amino acid sequence of B cell antigenic epitope | 序列长度 Length/aa |
---|---|---|---|---|
1 | 959 | 966 | LNTLVKQL | 8 |
2 | 973 | 979 | ISSVLND | 7 |
3 | 1 003 | 1 011 | SLQTYVTQQ | 9 |
4 | 1 030 | 1 037 | SECVLGQS | 8 |
5 | 1 057 | 1 070 | PHGVVFLHVTYVPA | 14 |
6 | 1 079 | 1 085 | PAICHDG | 7 |
7 | 1 123 | 1 132 | SGNCDVVIGI | 10 |
8 | 1 174 | 1 179 | ASVVNI | 6 |
Table 3 B cell epitopes of S protein in SARS-CoV-2 strain which can cross-immunize with SARS-CoV
区段 Sequence number | 起始位置 Initial position | 终止位置 Terminal position | B细胞抗原表位氨基酸序列 Amino acid sequence of B cell antigenic epitope | 序列长度 Length/aa |
---|---|---|---|---|
1 | 959 | 966 | LNTLVKQL | 8 |
2 | 973 | 979 | ISSVLND | 7 |
3 | 1 003 | 1 011 | SLQTYVTQQ | 9 |
4 | 1 030 | 1 037 | SECVLGQS | 8 |
5 | 1 057 | 1 070 | PHGVVFLHVTYVPA | 14 |
6 | 1 079 | 1 085 | PAICHDG | 7 |
7 | 1 123 | 1 132 | SGNCDVVIGI | 10 |
8 | 1 174 | 1 179 | ASVVNI | 6 |
[1] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5 URL |
[2] |
Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395(10223):470-473.
doi: 10.1016/S0140-6736(20)30185-9 URL |
[3] | 中国疾病预防控制中心. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020(2):145-151. |
Chinese Center for Disease Control and Prevention. Epidemiological analysis of novel coronavirus pneumonia[J]. Chinese Journal of Epidemiology, 2020(2):145-151. | |
[4] |
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733.
doi: 10.1056/NEJMoa2001017 URL |
[5] |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483):1260-1263.
doi: 10.1126/science.abb2507 URL |
[6] |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485):1444-1448.
doi: 10.1126/science.abb2762 URL |
[7] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273.
doi: 10.1038/s41586-020-2012-7 URL |
[8] |
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8 URL |
[9] |
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807):215-220.
doi: 10.1038/s41586-020-2180-5 URL |
[10] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798):265-269.
doi: 10.1038/s41586-020-2008-3 URL |
[11] |
Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody[J]. Nature, 2020, 583:290-295.
doi: 10.1038/s41586-020-2349-y URL |
[12] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2):281-292.
doi: 10.1016/j.cell.2020.02.058 URL |
[13] |
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors[J]. Science, 2020, 368(6489):409-412.
doi: 10.1126/science.abb3405 URL |
[14] | 朱锡华, 吴玉章. 对表位生物学研究的认识和体会[J]. 上海免疫学杂志, 1998(1):1-2. |
Zhu XH, Wu YH. Understanding and experience of epitope biology studies[J]. Shanghai Journal of Immunology, 1998(1):1-2. | |
[15] |
Krueger DK, Kelly SM, Lewicki DN, et al. Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion[J]. J Virol, 2001, 75(6):2792-2802.
pmid: 11222703 |
[16] |
Walls AC, Tortorici MA, Snijder J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. PNAS, 2017, 114(42):11157-11162.
doi: 10.1073/pnas.1708727114 URL |
[17] |
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus(SARS-CoV-2)based on SARS-CoV immunological studies[J]. Viruses, 2020, 12(3):254.
doi: 10.3390/v12030254 URL |
[18] |
Mcroy WC, Baric RS. Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion[J]. J Virol, 2008, 82(3):1414-1424.
doi: 10.1128/JVI.01674-07 URL |
[19] | 沈媚, 陈冰清, 于瑞嵩, 等. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017, 44(10):2452-2462. |
Shen M, Chen BQ, Yu RS, et al. Structure and function of coronavirus S proteins and their receptors[J]. Microbiology Bulletin, 2017, 44(10):2452-2462. | |
[20] | 毛亚萍, 卞大伟. SARS-CoV-2毒株S蛋白突变及其影响的生物信息学分析[J]. 病毒学报, 2020, 36(6):1020-1027. |
Mao YP, Bian DW. Bioinformatics analysis of S protein in SARS-CoV-2 strains and their effects[J]. Journal of Viruses, 2020, 36(6):1020-1027. | |
[21] |
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 Spike Glycoprotein[J]. Cell, 2020, 181(2):281-292.
doi: 10.1016/j.cell.2020.02.058 URL |
[22] | Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike[J]. Sci Adv, 2019, 5(4):v4580. |
[23] |
Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences[J]. PNAS, 1981, 78(6):3824-3828.
pmid: 6167991 |
[24] |
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein[J]. J Mol Biol, 1982, 157(1):105-132.
pmid: 7108955 |
[25] | 孙建宏, 曹殿军. 细胞的抗原表位研究方法[J]. 动物医学进展, 2004, 25(5):18-21. |
Sun JH, Cao DJ. An antigenic epitope study of cells[J]. Advances in Animal Medicine, 2004, 25(5):18-21. | |
[26] |
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends Microbiol, 2016, 24(6):490-502.
doi: 10.1016/j.tim.2016.03.003 URL |
[27] |
Liu L, Wei Q, Lin Q, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection[J]. JCI Insight, 2019, 4(4):e123158.
doi: 10.1172/jci.insight.123158 URL |
[28] | 周建平, 周裕军, 许秀丽, 等. 北京丹大生物技术有限公司.新型冠状病毒优势表位融合蛋白、诊断试剂及应用制造技术:中国, 20942233[P]. 2020-06-02. |
Zhou JP, Zhou YJ, Xu XL, et al. Novel Coronavirus dominant epitope fusion protein, diagnostic reagent and applied manufacturing technology:China, 20942233[P]. 2020-06-02. |
[1] | WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies [J]. Biotechnology Bulletin, 2022, 38(5): 248-256. |
[2] | WANG Qiao-ju, HU Yu-meng, WEN Ya-ya, SONG Li, MENG Chuang, PAN Zhi-ming, JIAO Xin-an. Expression and Activity Identification of SARS-CoV-2 S1 Protein [J]. Biotechnology Bulletin, 2022, 38(3): 157-163. |
[3] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[4] | CHEN Duo, LIU Yong-zhe. Prokaryotic Expression,Purification and Crystallization of N-terminal Domain of Nucleocapsid Protein in SARS-CoV-2 [J]. Biotechnology Bulletin, 2022, 38(12): 149-155. |
[5] | ZHANG Xi-xi, ZHANG Yi-qing, LI Yu-lin, HAN Xiao, WANG Guo-qiang, WANG Xiao-jun, WANG Xu-dong, WANG Yun-long. Prokaryotic Expression,Purification and Application of N Protein C-terminal Recombinant Protein in Novel Coronavirus(SARS-CoV-2) [J]. Biotechnology Bulletin, 2021, 37(5): 92-97. |
[6] | LI Jia-jun, ZHENG Xiao, SHENG Jie, XU Yao. Novel Coronavirus and Research Progress of Related Clinical Detection Methods [J]. Biotechnology Bulletin, 2021, 37(4): 282-292. |
[7] | LV Ji-zhou, WU Shao-qiang, ZHANG Zhou, DENG Jun-hua, YUAN Xiang-fen, WANG Cai-xia, FENG Chun-yan, LIN Xiang-mei. Development of a Real-time Fluorescent Double Reverse-Transcription Recombinase Polymerase Amplification Method and Its Application in Detecting SARS-CoV-2 in Food [J]. Biotechnology Bulletin, 2020, 36(11): 238-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||