Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 188-193.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0596
Previous Articles Next Articles
LIU Xiao-mei(), WANG Dong-xin, ZHANG Chun(), WEI Shuang-shi()
Received:
2021-05-07
Online:
2022-03-26
Published:
2022-04-06
Contact:
ZHANG Chun,WEI Shuang-shi
E-mail:liuxm@sibet.ac.cn;chunzhang@sibet.ac.cn;weiss@sibet.ac.cn
LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression[J]. Biotechnology Bulletin, 2022, 38(3): 188-193.
shRNA编号shRNA No. | 寡核苷酸类型Oligo type | 寡核苷酸序列Oligo sequence |
---|---|---|
shRNA1 | 顶链Top strand | 5'- CACCGCTTCCACTGAGAAGTCTAACTTCAAGAGAGTTAGACTTCTCAGTGGAAGC -3' |
底链Bottom | 5'- AAAAGCTTCCACTGAGAAGTCTAACTCTCTTGAAGTTAGACTTCTCAGTGGAAGC -3' | |
shRNA2 | 顶链Top strand | 5'- CACCGCACACGCCTATTAATTTAGTTTCAAGAGAACTAAATTAATAGGCGTGTGC -3' |
底链Bottom | 5'- AAAAGCACACGCCTATTAATTTAGTTCTCTTGAAACTAAATTAATAGGCGTGTGC -3' | |
shRNA3 | 顶链Top strand | 5'- CACCGGTGATTCTTCTTCAGGTTGGTTCAAGAGACCAACCTGAAGAAGAATCACC -3' |
底链Bottom | 5'- AAAAGGTGATTCTTCTTCAGGTTGGTCTCTTGAACCAACCTGAAGAAGAATCACC -3' | |
shRNA4 | 顶链Top strand | 5'- CACCGCTGGTGCTGCAGCTTATTATTTCAAGAGAATAATAAGCTGCAGCACCAGC -3' |
底链Bottom | 5'- AAAAGCTGGTGCTGCAGCTTATTATTCTCTTGAAATAATAAGCTGCAGCACCAGC -3' | |
shRNA5 | 顶链Top strand | 5'- CACCGCAACTGTGTTGCTGATTATTTTCAAGAGAAATAATCAGCAACACAGTTGC -3' |
底链Bottom | 5'- AAAAGCAACTGTGTTGCTGATTATTTCTCTTGAAAATAATCAGCAACACAGTTGC -3' | |
shRNA6 | 顶链Top strand | 5'- CACCGCCGGTAGCACACCTTGTAATTTCAAGAGAATTACAAGGTGTGCTACCGGC -3' |
底链Bottom | 5'- AAAAGCCGGTAGCACACCTTGTAATTCTCTTGAAATTACAAGGTGTGCTACCGGC -3' | |
shRNA7 | 顶链Top strand | 5'- CACCGGTGTTGGTTACCAACCATACTTCAAGAGAGTATGGTTGGTAACCAACACC -3' |
底链Bottom | 5'- AAAAGGTGTTGGTTACCAACCATACTCTCTTGAAGTATGGTTGGTAACCAACACC -3' |
Table 1 Oligonucleotide sequence of shRNA
shRNA编号shRNA No. | 寡核苷酸类型Oligo type | 寡核苷酸序列Oligo sequence |
---|---|---|
shRNA1 | 顶链Top strand | 5'- CACCGCTTCCACTGAGAAGTCTAACTTCAAGAGAGTTAGACTTCTCAGTGGAAGC -3' |
底链Bottom | 5'- AAAAGCTTCCACTGAGAAGTCTAACTCTCTTGAAGTTAGACTTCTCAGTGGAAGC -3' | |
shRNA2 | 顶链Top strand | 5'- CACCGCACACGCCTATTAATTTAGTTTCAAGAGAACTAAATTAATAGGCGTGTGC -3' |
底链Bottom | 5'- AAAAGCACACGCCTATTAATTTAGTTCTCTTGAAACTAAATTAATAGGCGTGTGC -3' | |
shRNA3 | 顶链Top strand | 5'- CACCGGTGATTCTTCTTCAGGTTGGTTCAAGAGACCAACCTGAAGAAGAATCACC -3' |
底链Bottom | 5'- AAAAGGTGATTCTTCTTCAGGTTGGTCTCTTGAACCAACCTGAAGAAGAATCACC -3' | |
shRNA4 | 顶链Top strand | 5'- CACCGCTGGTGCTGCAGCTTATTATTTCAAGAGAATAATAAGCTGCAGCACCAGC -3' |
底链Bottom | 5'- AAAAGCTGGTGCTGCAGCTTATTATTCTCTTGAAATAATAAGCTGCAGCACCAGC -3' | |
shRNA5 | 顶链Top strand | 5'- CACCGCAACTGTGTTGCTGATTATTTTCAAGAGAAATAATCAGCAACACAGTTGC -3' |
底链Bottom | 5'- AAAAGCAACTGTGTTGCTGATTATTTCTCTTGAAAATAATCAGCAACACAGTTGC -3' | |
shRNA6 | 顶链Top strand | 5'- CACCGCCGGTAGCACACCTTGTAATTTCAAGAGAATTACAAGGTGTGCTACCGGC -3' |
底链Bottom | 5'- AAAAGCCGGTAGCACACCTTGTAATTCTCTTGAAATTACAAGGTGTGCTACCGGC -3' | |
shRNA7 | 顶链Top strand | 5'- CACCGGTGTTGGTTACCAACCATACTTCAAGAGAGTATGGTTGGTAACCAACACC -3' |
底链Bottom | 5'- AAAAGGTGTTGGTTACCAACCATACTCTCTTGAAGTATGGTTGGTAACCAACACC -3' |
Fig. 1 Analysis and comparison of the inhibitory effects of different shRNAs on the expression of S gene A:Quantitative RT-PCR detection. B:Western blot detection. “-” refers to that only the pFastBacDual-ITR-S-T2A-EGFP plasmid was used to transfect,and “NC” refers to the negative control plasmid pAAV-U6. **P<0.01, ***P<0.001, and "ns" means no statistically significant difference
Fig. 3 Detection of the in vivo inhibitory effect of rAAV-mediated shRNA on S gene expression A:qRT-PCR detection of S gene expression in lung tissue. B:qRT-PCR detection of S gene expression in muscle tissue. *P<0.05, **P<0.01, ***P<0.001
[1] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 579(7798):265-269.
doi: 10.1038/s41586-020-2008-3 URL |
[2] |
Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan:an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol, 2020, 94(7). DOI: 10.1128/jvi.00127-20.
doi: 10.1128/jvi.00127-20 |
[3] | Maillard PV, Veen AG, Poirier EZ, et al. Slicing and dicing viruses:antiviral RNA interference in mammals[J]. EMBO J, 2019, 38(8):1. |
[4] |
DeVincenzo J, Cehelsky JE, Alvarez R, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus(RSV)[J]. Antiviral Res, 2008, 77(3):225-231.
doi: 10.1016/j.antiviral.2007.11.009 URL |
[5] |
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses:strike and counterstrike[J]. Nat Biotechnol, 2007, 25(12):1435-1443.
doi: 10.1038/nbt1369 pmid: 18066040 |
[6] |
Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells[J]. J Virol, 2004, 78(14):7523-7527.
pmid: 15220426 |
[7] |
Li T, Zhang Y, Fu L, et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication[J]. Gene Ther, 2005, 12(9):751-761.
pmid: 15772689 |
[8] | Tang QQ, Li BJ, Woodle M, et al. Application of siRNA against SARS in the rhesus macaque model[M]// RNAi, 2008:139-158. |
[9] |
Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395(10223):470-473.
doi: 10.1016/S0140-6736(20)30185-9 URL |
[10] |
Chen Y, Liu Q, Guo D. Emerging coronaviruses:Genome structure, replication, and pathogenesis[J]. J Med Virol, 2020, 92(4):418-423.
doi: 10.1002/jmv.25681 pmid: 31967327 |
[11] |
Lundstrom K. Are viral vectors any good for RNAi antiviral therapy?[J]. Viruses, 2020, 12(10):1189.
doi: 10.3390/v12101189 URL |
[12] |
Lundstrom K. Viral vectors applied for RNAi-based antiviral therapy[J]. Viruses, 2020, 12(9):924.
doi: 10.3390/v12090924 URL |
[13] |
Srivastava A. Advances and challenges in the use of recombinant AAV vectors for human gene therapy[J]. Cell Gene Therapy Insights, 2016, 2(5):553-575.
doi: 10.18609/cgti URL |
[14] | Mingozzi F, High KA. Immune responses to AAV vectors:overcoming barriers to successful gene therapy[J]. Blood, 2013, 122(1):23-36. |
[15] |
Fitzpatrick Z, Leborgne C, Barbon E, et al. Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction[J]. Mol Ther Methods Clin Dev, 2018, 9:119-129.
doi: 10.1016/j.omtm.2018.02.003 URL |
[1] | WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies [J]. Biotechnology Bulletin, 2022, 38(5): 248-256. |
[2] | WANG Qiao-ju, HU Yu-meng, WEN Ya-ya, SONG Li, MENG Chuang, PAN Zhi-ming, JIAO Xin-an. Expression and Activity Identification of SARS-CoV-2 S1 Protein [J]. Biotechnology Bulletin, 2022, 38(3): 157-163. |
[3] | CHEN Duo, LIU Yong-zhe. Prokaryotic Expression,Purification and Crystallization of N-terminal Domain of Nucleocapsid Protein in SARS-CoV-2 [J]. Biotechnology Bulletin, 2022, 38(12): 149-155. |
[4] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[5] | ZHANG Xi-xi, ZHANG Yi-qing, LI Yu-lin, HAN Xiao, WANG Guo-qiang, WANG Xiao-jun, WANG Xu-dong, WANG Yun-long. Prokaryotic Expression,Purification and Application of N Protein C-terminal Recombinant Protein in Novel Coronavirus(SARS-CoV-2) [J]. Biotechnology Bulletin, 2021, 37(5): 92-97. |
[6] | LI Jia-jun, ZHENG Xiao, SHENG Jie, XU Yao. Novel Coronavirus and Research Progress of Related Clinical Detection Methods [J]. Biotechnology Bulletin, 2021, 37(4): 282-292. |
[7] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
[8] | GAO Jing-xi, GAO Ke-xing, LU Fei, JI Feng, GUO Zhi-gang. Prediction of SARS-CoV-2 S Protein B Cell Antigenic Epitope Cross-immunizing with SARS-CoV [J]. Biotechnology Bulletin, 2021, 37(10): 169-178. |
[9] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
[10] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
[11] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[12] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[13] | LV Ji-zhou, WU Shao-qiang, ZHANG Zhou, DENG Jun-hua, YUAN Xiang-fen, WANG Cai-xia, FENG Chun-yan, LIN Xiang-mei. Development of a Real-time Fluorescent Double Reverse-Transcription Recombinase Polymerase Amplification Method and Its Application in Detecting SARS-CoV-2 in Food [J]. Biotechnology Bulletin, 2020, 36(11): 238-244. |
[14] | HAN Cui-cui, LIU Li-kun, WANG Yu-chun, YANG Ying, LIU Ji-cheng, ZHOU Zhong-guang. Construction of TOX3 Gene Lentiviral RNA Interference Vector and Effect on Proliferation of Human Breast Cancer Cells ZR-75-1 [J]. Biotechnology Bulletin, 2019, 35(7): 141-147. |
[15] | WANG Jia-yue, LIU Xiang-nan, PENG Kang-li, ZHAO Bo. Construction and Identification of Lentiviral Vector for RNA Interference of USE1 Gene [J]. Biotechnology Bulletin, 2019, 35(3): 117-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||