Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 29-35.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0135
Previous Articles Next Articles
XIE Xin-yu(), SHI Ming-zi, QI Hai-shi, WU Di, ZHANG Xu, ZHANG Chun-hao, WU Zhan-hai, WEI Zi-min()
Received:
2022-01-28
Online:
2022-05-26
Published:
2022-06-10
Contact:
WEI Zi-min
E-mail:xiexinyu@neau.edu.cn;weizimin@neau.edu.cn
XIE Xin-yu, SHI Ming-zi, QI Hai-shi, WU Di, ZHANG Xu, ZHANG Chun-hao, WU Zhan-hai, WEI Zi-min. Compost Humification:An Overview of Abiotic and Biological Regulatory Mechanisms[J]. Biotechnology Bulletin, 2022, 38(5): 29-35.
Fig. 1 Diagram of the mechanism of the composting The red continuous arrows indicate the mineralisation process(emission of CO2)and the black continuous arrows indicate the mineralisation process arrows indicate the humification process(formation of humic substances). This figure cited from reference[21]
[1] |
Qi HS, Zhao Y, Wang X, et al. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresour Technol, 2021, 330:124960.
doi: 10.1016/j.biortech.2021.124960 URL |
[2] |
Ren XN, Wang Q, Zhang Y, et al. Improvement of humification and mechanism of nitrogen transformation during pig manure composting with Black Tourmaline[J]. Bioresour Technol, 2020, 307:123236.
doi: 10.1016/j.biortech.2020.123236 URL |
[3] | Stevenson FJ. Humus chemistry genesis, composition, reactions[M]. New York: Wiley, 1982. |
[4] |
Zhao XY, He XS, Xi BD, et al. Response of humic-reducing microorganisms to the redox properties of humic substance during composting[J]. Waste Manag, 2017, 70:37-44.
doi: 10.1016/j.wasman.2017.09.012 URL |
[5] | 窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究[J]. 土壤学报, 2006, 43(6):934-940. |
Dou S, Xiao YC, Zhang JJ. Quantities and structural characteristics of various fractions of soil humin[J]. Acta Pedol Sin, 2006, 43(6):934-940. | |
[6] | Stevenson FJ. Humus Chemistry:Genesis, Composition, Reactions, Second Edition[J]. Journal of Chemical Education, 1995. |
[7] |
Qi HS, Zhao Y, Zhao XY, et al. Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments:it is meaningful carbon sequestration[J]. Bioresour Technol, 2020, 299:122596.
doi: 10.1016/j.biortech.2019.122596 URL |
[8] | 明中远. 基于市政污泥好氧堆肥过程的强化腐殖化技术研究[D]. 北京: 清华大学, 2016. |
Ming ZY. Research on the enhenced humification in primary stage of sewage sludge composting[D]. Beijing: Tsinghua University, 2016. | |
[9] |
Jokic A, Wang MC, Liu C, et al. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature:the role of δ-MnO2[J]. Org Geochem, 2004, 35(6):747-762.
doi: 10.1016/j.orggeochem.2004.01.021 URL |
[10] |
Wu D, Wei ZM, Mohamed TA, et al. Lignocellulose biomass bioconversion during composting:mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286(Pt 1):131635.
doi: 10.1016/j.chemosphere.2021.131635 URL |
[11] |
Wang LQ, Zhao Y, Liu HL, et al. The action difference of metabolic regulators on carbon conversion during different agricultural organic wastes composting[J]. Bioresour Technol, 2021, 329:124902.
doi: 10.1016/j.biortech.2021.124902 URL |
[12] |
Zhang S, Wei ZM, Zhao MY, et al. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting[J]. Bioresour Technol, 2020, 318:124075.
doi: 10.1016/j.biortech.2020.124075 URL |
[13] |
Lu Q, Zhao Y, Gao XT, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresour Technol, 2018, 256:128-136.
doi: 10.1016/j.biortech.2018.01.142 URL |
[14] |
Malik AA, Puissant J, Buckeridge KM, et al. Land use driven change in soil pH affects microbial carbon cycling processes[J]. Nat Commun, 2018, 9(1):3591.
doi: 10.1038/s41467-018-05980-1 URL |
[15] |
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage[J]. Nat Microbiol, 2017, 2:17105.
doi: 10.1038/nmicrobiol.2017.105 pmid: 28741607 |
[16] | 周娇娇, 佘炜怡, 王浩入, 等. 5-氮杂-2-脱氧胞苷对里氏木霉产纤维素酶的影响[J]. 深圳大学学报:理工版, 2017, 34(2):122-131. |
Zhou JJ, She WY, Wang HR, et al. Effect of 5-aza-2’-deoxycytidine on the expression of cellulases in Trichoderma reesei[J]. J Shenzhen Univ Sci Eng, 2017, 34(2):122-131. | |
[17] | 陈忠华. 真菌降解木质素的研究进展及发展前景[J]. 黑龙江畜牧兽医, 2009(9):28-29. |
Chen ZH. Research progress and development prospects of fungal degradation of lignin[J]. Heilongjiang Animal Sci Vet Med, 2009(9):28-29. | |
[18] | 闫智培, 李纪红, 李十中, 等. 木质素对木质纤维素降解性能的影响[J]. 农业工程学报, 2014, 30(19):265-272. |
Yan ZP, Li JH, Li SZ, et al. Effect of lignin on recalcitrance of lignocellulose[J]. Trans Chin Soc Agric Eng, 2014, 30(19):265-272. | |
[19] | 郑春娟, 邓婷婷, 来亚鹏, 等. 真菌纤维素酶表观遗传修饰的研究进展[J]. 纤维素科学与技术, 2018, 26(3):71-77. |
Zheng CJ, Deng TT, Lai YP, et al. Advances on epigenetic modification of fungi cellulase[J]. J Cellul Sci Technol, 2018, 26(3):71-77. | |
[20] | 张鹏飞, 李素艳, 余克非, 等. 木质素降解细菌的筛选及园林废弃物降解研究[J]. 安徽农业大学学报, 2018, 45(4):676-681. |
Zhang PF, Li SY, Yu KF, et al. Screening of lignin-degrading bacteria and study on degradation of garden waste[J]. J Anhui Agric Univ, 2018, 45(4):676-681. | |
[21] |
Zhang ZC, Zhao Y, Yang TX, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting:Amino acids as the key linker to promote humification process[J]. Bioresour Technol, 2019, 291:121882.
doi: 10.1016/j.biortech.2019.121882 URL |
[22] |
Xiao R, Awasthi MK, Li RH, et al. Recent developments in biochar utilization as an additive in organic solid waste composting:a review[J]. Bioresour Technol, 2017, 246:203-213.
doi: 10.1016/j.biortech.2017.07.090 URL |
[23] |
Lycus P, Lovise Bøthun K, Bergaust L, et al. Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy[J]. ISME J, 2017, 11(10):2219-2232.
doi: 10.1038/ismej.2017.82 URL |
[24] |
Philippot L, Andert J, Jones CM, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Glob Change Biol, 2011, 17(3):1497-1504.
doi: 10.1111/j.1365-2486.2010.02334.x URL |
[25] |
Tsutsui H, Fujiwara T, Matsukawa K, et al. Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure[J]. Bioresour Technol, 2013, 141:205-211.
doi: 10.1016/j.biortech.2013.02.071 URL |
[26] |
Shi MZ, Zhao XY, Zhu LJ, et al. Elucidating the negative effect of denitrification on aromatic humic substance formation during sludge aerobic fermentation[J]. J Hazard Mater, 2020, 388:122086.
doi: 10.1016/j.jhazmat.2020.122086 URL |
[27] |
Szanto GL, Hamelers HVM, Rulkens WH, et al. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure[J]. Bioresour Technol, 2007, 98(14):2659-2670.
doi: 10.1016/j.biortech.2006.09.021 URL |
[28] | Sprent JI, Freney JR, Simpson JR. Gaseous loss of nitrogen from plant-soil systems[J]. J Appl Ecol, 1985, 22(2):602. |
[29] |
Kim JK, Park KJ, Cho KS, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J]. Bioresour Technol, 2005, 96(17):1897-1906.
doi: 10.1016/j.biortech.2005.01.040 URL |
[30] |
Ge JY, Huang GQ, Li JB, et al. Multivariate and multiscale approaches for interpreting the mechanisms of nitrous oxide emission during pig manure-wheat straw aerobic composting[J]. Environ Sci Technol, 2018, 52(15):8408-8418.
doi: 10.1021/acs.est.8b02958 URL |
[31] |
Xu MY, He ZL, Zhang Q, et al. Responses of aromatic-degrading microbial communities to elevated nitrate in sediments[J]. Environ Sci Technol, 2015, 49(20):12422-12431.
doi: 10.1021/acs.est.5b03442 URL |
[32] |
Ornston LN. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida:IV. REGULATION[J]. J Biol Chem, 1966, 241(16):3800-3810.
pmid: 5916393 |
[33] |
Hölzer M, Burd W, Reiβig HU, et al. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915[J]. Adv Synth Catal, 2001, 343(6/7):591-595.
doi: 10.1002/1615-4169(200108)343:6/7<591::AID-ADSC591>3.0.CO;2-E URL |
[34] |
Wu JQ, Zhao Y, Zhao W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresour Technol, 2017, 226:191-199.
doi: 10.1016/j.biortech.2016.12.031 URL |
[35] | Wang SG, Zeng Y. Ammonia emission mitigation in food waste composting:a review[J]. Bioresour Technol, 2018, 248(Pt A):13-19. |
[36] |
Tang YF, Yang YC, Cheng DD, et al. Value-added humic acid derived from lignite using novel solid-phase activation process with Pd/CeO2 nanocatalyst:a physiochemical study[J]. ACS Sustainable Chem Eng, 2017, 5(11):10099-10110.
doi: 10.1021/acssuschemeng.7b02094 URL |
[37] |
Havelcová M, Mizera J, Sýkorová I, et al. Sorption of metal ions on lignite and the derived humic substances[J]. J Hazard Mater, 2009, 161(1):559-564.
doi: 10.1016/j.jhazmat.2008.03.136 pmid: 18490104 |
[38] |
Yang F, Tang CY, Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms[J]. Chem Soc Rev, 2021, 50(10):6221-6239.
doi: 10.1039/d0cs01363c pmid: 34027951 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||