Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 22-28.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0134
Previous Articles Next Articles
WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi()
Received:
2022-01-28
Online:
2022-05-26
Published:
2022-06-10
Contact:
XU Zhi
E-mail:xuzhi9910@126.com
WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi. Humification Process and Microbial Driving Mechanism of Composting[J]. Biotechnology Bulletin, 2022, 38(5): 22-28.
[1] | 任利枢. 我国农业废弃物处理现状[J]. 畜牧兽医科技信息, 2019(8):35. |
Ren LS. Current status of agricultural waste treatment in China[J]. Chin J Animal Husb Vet Med, 2019(8):35. | |
[2] |
Sarsaiya S, Jain A, Kumar Awasthi S, et al. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives[J]. Bioresour Technol, 2019, 291:121905.
doi: 10.1016/j.biortech.2019.121905 URL |
[3] | 田宜水, 单明, 孔庚, 等. 我国生物质经济发展战略研究[J]. 中国工程科学, 2021, 23(1):133-140. |
Tian YS, Shan M, Kong G, et al. Development strategy of biomass economy in China[J]. Strateg Study CAE, 2021, 23(1):133-140. | |
[4] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39(6):1168-1176. |
Wu HW, Sun XQ, Liang BW, et al. Analysis of livestock and poultry manure pollution in China and its treatment and resource utilization[J]. J Agro Environ Sci, 2020, 39(6):1168-1176. | |
[5] |
Zhang SH, Chen ZQ, Wen QX, et al. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra:characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155:358-366.
doi: 10.1016/j.chemosphere.2016.04.051 URL |
[6] |
Yan L, Li ZG, Wang GX, et al. Diversity of ammonia-oxidizing bacteria and Archaea in response to different aeration rates during cattle manure composting[J]. Ecol Eng, 2016, 93:46-54.
doi: 10.1016/j.ecoleng.2016.05.002 URL |
[7] |
Zhao JC, Sun XN, Awasthi MK, et al. Performance evaluation of gaseous emissions and Zn speciation during Zn-rich antibiotic manufacturing wastes and pig manure composting[J]. Bioresour Technol, 2018, 267:688-695.
doi: 10.1016/j.biortech.2018.07.088 URL |
[8] |
Zhu LJ, Zhao Y, Zhang WS, et al. Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes[J]. Bioresour Technol, 2019, 285:121326.
doi: 10.1016/j.biortech.2019.121326 URL |
[9] |
Chen XM, Liu R, Hao JK, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresour Technol, 2019, 271:482-486.
doi: 10.1016/j.biortech.2018.09.096 URL |
[10] |
Lu Q, Zhao Y, Gao XT, et al. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting[J]. Bioresour Technol, 2018, 256:128-136.
doi: 10.1016/j.biortech.2018.01.142 URL |
[11] |
Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review[J]. Bioresour Technol, 2000, 72(2):169-183.
doi: 10.1016/S0960-8524(99)00104-2 URL |
[12] |
Mehta CM, Palni U, Franke-Whittle IH, et al. Compost:its role, mechanism and impact on reducing soil-borne plant diseases[J]. Waste Manag, 2014, 34(3):607-622.
doi: 10.1016/j.wasman.2013.11.012 URL |
[13] |
Zhang L, Sun XY. Addition of fish pond sediment and rock phosphate enhances the composting of green waste[J]. Bioresour Technol, 2017, 233:116-126.
doi: 10.1016/j.biortech.2017.02.073 URL |
[14] |
Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass:effect of key parameters, technological improvements, and challenges[J]. Bioresour Technol, 2020, 300:122724.
doi: 10.1016/j.biortech.2019.122724 URL |
[15] |
Liu SJ. Woody biomass:niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis[J]. Biotechnol Adv, 2010, 28(5):563-582.
doi: 10.1016/j.biotechadv.2010.05.006 URL |
[16] |
Harindintwali JD, Zhou JL, Yu XB. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria:a novel tool for environmental sustainability[J]. Sci Total Environ, 2020, 715:136912.
doi: 10.1016/j.scitotenv.2020.136912 URL |
[17] |
Huang WY, Ngo HH, Lin C, et al. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community[J]. Sci Total Environ, 2019, 660:595-602.
doi: 10.1016/j.scitotenv.2018.12.312 URL |
[18] |
Xie XY, Gao XT, Pan CN, et al. Assessment of multiorigin humin components evolution and influencing factors during composting[J]. J Agric Food Chem, 2019, 67(15):4184-4192.
doi: 10.1021/acs.jafc.8b07007 URL |
[19] |
Wu JQ, Zhao Y, Zhao W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresour Technol, 2017, 226:191-199.
doi: 10.1016/j.biortech.2016.12.031 URL |
[20] |
Gao XT, Tan WB, Zhao Y, et al. Diversity in the mechanisms of humin formation during composting with different materials[J]. Environ Sci Technol, 2019, 53(7):3653-3662.
doi: 10.1021/acs.est.8b06401 URL |
[21] |
Chen Y, Wang YY, Xu Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresour Technol, 2019, 293:122075.
doi: 10.1016/j.biortech.2019.122075 URL |
[22] |
Voběrková S, Vaverková MD, Burešová A, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste[J]. Waste Manag, 2017, 61:157-164.
doi: 10.1016/j.wasman.2016.12.039 URL |
[23] |
Kuppuraj SP, Venkidasamy B, Selvaraj D, et al. Comprehensive in silico and gene expression profiles of MnP family genes in Phanerochaete chrysosporium towards lignin biodegradation[J]. Int Biodeterior Biodegrad, 2021, 157:105143.
doi: 10.1016/j.ibiod.2020.105143 URL |
[24] |
López-González JA, Vargas-García M, López MJ, et al. Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting[J]. Bioresour Technol, 2015, 187:305-313.
doi: 10.1016/j.biortech.2015.03.124 URL |
[25] |
Zhu N, Zhu YY, Kan ZX, et al. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw[J]. Bioresour Technol, 2021, 341:125842.
doi: 10.1016/j.biortech.2021.125842 URL |
[26] |
Kulikowska D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Manag, 2016, 49:196-203.
doi: 10.1016/j.wasman.2016.01.005 URL |
[27] |
Zhou Y, Selvam A, Wong JWC. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues[J]. Bioresour Technol, 2014, 168:229-234.
doi: 10.1016/j.biortech.2014.05.070 URL |
[28] |
Xu JQ, Jiang ZW, Li MQ, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. J Environ Manage, 2019, 243:240-249.
doi: 10.1016/j.jenvman.2019.05.008 URL |
[29] |
Lee JG, Yoon HY, Cha JY, et al. Artificial humification of lignin architecture:top-down and bottom-up approaches[J]. Biotechnol Adv, 2019, 37(8):107416.
doi: 10.1016/j.biotechadv.2019.107416 URL |
[30] |
Niederer C, Schwarzenbach RP, Goss KU. Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals[J]. Environ Sci Technol, 2007, 41(19):6711-6717.
doi: 10.1021/es0709932 URL |
[31] |
Wang C, Tu QP, Dong D, et al. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting[J]. J Hazard Mater, 2014, 280:409-416.
doi: 10.1016/j.jhazmat.2014.08.030 URL |
[32] |
de Melo BAG, Motta FL, Santana MHA. Humic acids:structural properties and multiple functionalities for novel technological developments[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62:967-974.
doi: 10.1016/j.msec.2015.12.001 URL |
[33] |
Zhang L, Sun XY. Evaluation of maifanite and silage as amendments for green waste composting[J]. Waste Manag, 2018, 77:435-446.
doi: 10.1016/j.wasman.2018.04.028 URL |
[34] |
Brandt A, Chen L, van Dongen BE, et al. Structural changes in lignins isolated using an acidic ionic liquid water mixture[J]. Green Chem, 2015, 17(11):5019-5034.
doi: 10.1039/C5GC01314C URL |
[35] |
Wu D, Wei ZM, Mohamed TA, et al. Lignocellulose biomass bioconversion during composting:mechanism of action of lignocellulase, pretreatment methods and future perspectives[J]. Chemosphere, 2022, 286(Pt 1):131635.
doi: 10.1016/j.chemosphere.2021.131635 URL |
[36] |
Abdellah YAY, Li TZ, Chen X, et al. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions[J]. Bioresour Technol, 2021, 320(Pt B):124402.
doi: 10.1016/j.biortech.2020.124402 URL |
[37] |
Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin:a review[J]. Biocatal Agric Biotechnol, 2020, 23:101498.
doi: 10.1016/j.bcab.2020.101498 URL |
[38] | Lobos S, Larraín J, Salas L, et al. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora[J]. Microbiology(Reading), 1994, 140(Pt 10):2691-2698. |
[39] |
Wu D, Wei ZM, Gao XZ, et al. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting[J]. Bioresour Technol, 2020, 315:123849.
doi: 10.1016/j.biortech.2020.123849 URL |
[40] |
Chefetz B, Kerem Z, Chen Y, et al. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste[J]. Soil Biol Biochem, 1998, 30(8/9):1091-1098.
doi: 10.1016/S0038-0717(97)00199-5 URL |
[41] |
Zhang ZC, Zhao Y, Yang TX, et al. Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting:Amino acids as the key linker to promote humification process[J]. Bioresour Technol, 2019, 291:121882.
doi: 10.1016/j.biortech.2019.121882 URL |
[42] | Parsons JW. Humus chemistry—genesis, composition, reactions[J]. Soil Sci, 1983, 135(2):129-130. |
[43] |
Awasthi MK, Wang Q, Chen HY, et al. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting[J]. Bioresour Technol, 2018, 247:138-146.
doi: 10.1016/j.biortech.2017.09.061 URL |
[44] |
Shin SK, Ko YJ, Hyeon JE, et al. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes[J]. Bioresour Technol, 2019, 289:121728.
doi: 10.1016/j.biortech.2019.121728 URL |
[45] |
Wang XY, Sun B, Mao JD, et al. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions[J]. Environ Sci Technol, 2012, 46(13):7159-7165.
doi: 10.1021/es300522x URL |
[46] |
Wei YQ, Wei ZM, Cao ZY, et al. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting[J]. Bioresour Technol, 2016, 211:610-617.
doi: 10.1016/j.biortech.2016.03.141 URL |
[47] |
Huang GF, Wong JWC, Wu QT, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Manag, 2004, 24(8):805-813.
doi: 10.1016/j.wasman.2004.03.011 URL |
[48] |
Cayuela ML, Sánchez-Monedero MA, Roig A. Evaluation of two different aeration systems for composting two-phase olive mill wastes[J]. Process Biochem, 2006, 41(3):616-623.
doi: 10.1016/j.procbio.2005.08.007 URL |
[49] |
Wang XQ, Cui HY, Shi JH, et al. Relationship between bacterial diversity and environmental parameters during composting of different raw materials[J]. Bioresour Technol, 2015, 198:395-402.
doi: 10.1016/j.biortech.2015.09.041 URL |
[50] | Wang SP, Zhong XZ, Wang TT, et al. Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process:the effects of initial pH adjustment[J]. Bioresour Technol, 2017, 245(Pt A):778-785. |
[51] |
Zhang WM, Yu CX, Wang XJ, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresour Technol, 2020, 297:122410.
doi: 10.1016/j.biortech.2019.122410 URL |
[52] |
Lei F, VanderGheynst JS. The effect of microbial inoculation and pH on microbial community structure changes during composting[J]. Process Biochem, 2000, 35(9):923-929.
doi: 10.1016/S0032-9592(99)00155-7 URL |
[53] |
Liu QZ, Liu J, Hong D, et al. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors[J]. J Hazard Mater, 2021, 412:125197.
doi: 10.1016/j.jhazmat.2021.125197 URL |
[54] |
Nadeem A, Baig S, Iqbal K, et al. Impact of laccase enzyme inducers on solid waste compost maturity and stability[J]. Environ Technol, 2014, 35(21/22/23/24):3130-3138.
doi: 10.1080/09593330.2014.932439 URL |
[55] |
Arab G, Razaviarani V, Sheng ZY, et al. Benefits to decomposition rates when using digestate as compost co-feedstock:part II - Focus on microbial community dynamics[J]. Waste Manag, 2017, 68:85-95.
doi: 10.1016/j.wasman.2017.07.014 URL |
[56] |
Wang K, Yin XB, Mao HL, et al. Changes in structure and function of fungal community in cow manure composting[J]. Bioresour Technol, 2018, 255:123-130.
doi: 10.1016/j.biortech.2018.01.064 URL |
[57] |
Hernández-Lara A, Ros M, Cuartero J, et al. Bacterial and fungal community dynamics during different stages of agro-industrial waste composting and its relationship with compost suppressiveness[J]. Sci Total Environ, 2022, 805:150330.
doi: 10.1016/j.scitotenv.2021.150330 URL |
[58] |
Zhang LL, Ma HX, Zhang HQ, et al. Thermomyces lanuginosus is the dominant fungus in maize straw composts[J]. Bioresour Technol, 2015, 197:266-275.
doi: 10.1016/j.biortech.2015.08.089 URL |
[59] |
Wang XQ, Kong ZJ, Wang YH, et al. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw[J]. J Environ Manage, 2020, 270:110958.
doi: 10.1016/j.jenvman.2020.110958 URL |
[60] |
Zhang CS, Xu Y, Zhao MH, et al. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting[J]. J Hazard Mater, 2018, 344:163-168.
doi: 10.1016/j.jhazmat.2017.10.017 URL |
[61] |
Li J, Bao HY, Xing WJ, et al. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar[J]. Bioresour Technol, 2020, 297:122377.
doi: 10.1016/j.biortech.2019.122377 URL |
[62] |
Zeng GM, Yu M, Chen YN, et al. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting[J]. Bioresour Technol, 2010, 101(1):222-227.
doi: 10.1016/j.biortech.2009.08.013 URL |
[63] |
Tortosa G, Torralbo F, Maza-Márquez P, et al. Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste(“alperujo”)composting[J]. Bioresour Technol, 2020, 295:122267.
doi: 10.1016/j.biortech.2019.122267 URL |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[3] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[4] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[5] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[6] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[7] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[8] | HAN Dong-jing, WANG Zhi-hua, ZHOU Ning, LIU Guo-qing, YANG Shao-hua, WANG Wen-jun. Screening and Degradation Effect of Lignin-degrading Bacteria in Termite Nurseries [J]. Biotechnology Bulletin, 2022, 38(3): 113-120. |
[9] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[10] | XU Ji-fen, CHEN Hong-fei, WANG Na, LIU Jing. Research Advances in Hog1 MAPK Signaling Pathway in Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 32-40. |
[11] | SUN Zhong-juan, LIU Qian-qian, GUO Yu-qian, WANG Guang-hui, WANG Chen-fang. Establishment of Analog-sensitive Protein Kinase Research System in Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 49-57. |
[12] | SUN Shu-fang, LUO Yong-li, LI Chun-hui, JIN Min, XU Qian. Determination of Lignin Monomer Crosslinking Structures in Wheat Stems by UPLC-MS/MS [J]. Biotechnology Bulletin, 2022, 38(10): 66-72. |
[13] | LI Nan-hai, SUN Zhuo, YANG Li-min. Effects of Phosphorus Level and Arbuscular Mycorrhizal Fungi on the Growth and Quality of Platycodon grandiflorum [J]. Biotechnology Bulletin, 2022, 38(1): 132-140. |
[14] | WANG Hui, ZHANG Shun-bin, JIN He, WANG Han, ZHANG Geng-hua, XIA Shi-ning, CHEN Jing-sheng, DUAN Yu-xi. Potential Function of 4-coumaric Acid-CoA Ligase in Response to Soybean Cyst Nematode Stress [J]. Biotechnology Bulletin, 2021, 37(7): 71-80. |
[15] | LV Yan, LIU Jian-li, LI Jing-yu, HOU Lin-lin, SUN Min, GOU Qi. Diversity of Arbuscular Mycorrhizal Fungi Inhabiting the Roots of Lycium barbarum in Different Varieties and Cultivation Regions [J]. Biotechnology Bulletin, 2021, 37(6): 36-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||