Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0311
LAI Xin-tong(), WANG Ke-lan, YOU Yu-xin, TAN Jun-jie()
Received:
2022-03-14
Online:
2022-06-26
Published:
2022-07-11
Contact:
TAN Jun-jie
E-mail:11218229@njau.edu.cn;tanjunjie@njau.edu.cn
LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing[J]. Biotechnology Bulletin, 2022, 38(6): 1-12.
碱基编辑器名称 Base editor | 结构组成 Architecture | 编辑窗口 Editing window | 序列偏好 Sequence preference | 参考文献 Reference |
---|---|---|---|---|
BE3 | rAPOBEC1-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
AID-BE3 | hAID-XTEN-nCas9-UGI | C3 - C8 | None | [ |
Target-AID | nCas9-linker-PmCDA1-UGI | C2 - C5 | None | [ |
CDA1-BE3 | PmCDA1-XTEN-nCas9-UGI | C1 - C7 | None | [ |
CDA1Δ-BE3 | PmCDA1Δ-nCas9-UGI | C3 - C4 | None | [ |
A3A-BE3 | hA3A-XTEN-nCas9-UGI | C4 - C8 | None | [ |
eA3A-BE3 | hA3A(N57G)-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
A3A∆-BE3 | hA3AΔ-nCas9-UGI | C5 - C6 | None | [ |
YE1-BE3 | rAPOBEC1(W90Y/R126E)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
YE2-BE3 | rAPOBEC1(W90Y/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
YEE-BE3 | rAPOBEC1(W90Y/R126E/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
SECURE-BE3 | rAPOBEC1(R33A or R33A/K34A)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
SaBE3 | rAPOBEC1-XTEN-Sa nCas9-UGI | C3 - C12 | TC | [ |
dCpf1-BE | rAPOBEC1-XTEN-dCpf1-UGI | C8 - C13 | TC | [ |
BE-PLUS | GCN4(10×)-nCas9 scFv-rAPOBEC1-UGI | C4 - C14 | TC | [ |
TAM | dCas9-linker-hAID(P182X) | C4 - C8 | None | [ |
CRISPR-X | dCas9/MS2-linker-hAIDΔ | C-50 - C50 | None | [ |
A3G-BE3 | hA3G-XTEN-nCas9-UGI | C4 - C8 | CC | [ |
eA3G-BE | hA3G-CTD-XTEN-nCas9-2*UGI | C4 - C8 | CC | [ |
ABE7.10 | TadA-linker-evoTadA-linker-nCas9 | A4 - A7 | None | [ |
ABE7.10F148A | TadA F148A-evoTadA F148A-linker-nCas9 | A5 | None | [ |
dCasMINI-ABE | TadA-linker-evoTadA-linker- dCasMINI | A3 - A4 | None | [ |
CP-ABEs | TadA -linker-evoTadA -linker-CP-nCas9s | A4 - A12 | None | [ |
Table 1 Major base editors and their characteristics
碱基编辑器名称 Base editor | 结构组成 Architecture | 编辑窗口 Editing window | 序列偏好 Sequence preference | 参考文献 Reference |
---|---|---|---|---|
BE3 | rAPOBEC1-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
AID-BE3 | hAID-XTEN-nCas9-UGI | C3 - C8 | None | [ |
Target-AID | nCas9-linker-PmCDA1-UGI | C2 - C5 | None | [ |
CDA1-BE3 | PmCDA1-XTEN-nCas9-UGI | C1 - C7 | None | [ |
CDA1Δ-BE3 | PmCDA1Δ-nCas9-UGI | C3 - C4 | None | [ |
A3A-BE3 | hA3A-XTEN-nCas9-UGI | C4 - C8 | None | [ |
eA3A-BE3 | hA3A(N57G)-XTEN-nCas9-UGI | C4 - C8 | TC | [ |
A3A∆-BE3 | hA3AΔ-nCas9-UGI | C5 - C6 | None | [ |
YE1-BE3 | rAPOBEC1(W90Y/R126E)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
YE2-BE3 | rAPOBEC1(W90Y/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
YEE-BE3 | rAPOBEC1(W90Y/R126E/R132E)-XTEN-nCas9-UGI | C5 - C6 | TC | [ |
SECURE-BE3 | rAPOBEC1(R33A or R33A/K34A)-XTEN-nCas9-UGI | C5 - C7 | TC | [ |
SaBE3 | rAPOBEC1-XTEN-Sa nCas9-UGI | C3 - C12 | TC | [ |
dCpf1-BE | rAPOBEC1-XTEN-dCpf1-UGI | C8 - C13 | TC | [ |
BE-PLUS | GCN4(10×)-nCas9 scFv-rAPOBEC1-UGI | C4 - C14 | TC | [ |
TAM | dCas9-linker-hAID(P182X) | C4 - C8 | None | [ |
CRISPR-X | dCas9/MS2-linker-hAIDΔ | C-50 - C50 | None | [ |
A3G-BE3 | hA3G-XTEN-nCas9-UGI | C4 - C8 | CC | [ |
eA3G-BE | hA3G-CTD-XTEN-nCas9-2*UGI | C4 - C8 | CC | [ |
ABE7.10 | TadA-linker-evoTadA-linker-nCas9 | A4 - A7 | None | [ |
ABE7.10F148A | TadA F148A-evoTadA F148A-linker-nCas9 | A5 | None | [ |
dCasMINI-ABE | TadA-linker-evoTadA-linker- dCasMINI | A3 - A4 | None | [ |
CP-ABEs | TadA -linker-evoTadA -linker-CP-nCas9s | A4 - A12 | None | [ |
[1] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
doi: 10.1126/science.1225829 URL |
[2] | Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases[J]. Nat Rev Genet, 2010, 11(9):636-646. |
[3] |
Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29(2):143-148.
doi: 10.1038/nbt.1755 URL |
[4] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39):E2579-E2586. |
[5] |
Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18(8):495-506.
doi: 10.1038/nrm.2017.48 URL |
[6] |
Sung P, Klein H. Mechanism of homologous recombination:mediators and helicases take on regulatory functions[J]. Nat Rev Mol Cell Biol, 2006, 7(10):739-750.
doi: 10.1038/nrm2008 URL |
[7] | Alanis-Lobato G, Zohren J, McCarthy A, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos[J]. Proc Natl Acad Sci USA, 2021, 118(22):e2004832117. |
[8] |
Höijer I, Emmanouilidou A, Östlund R, et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations[J]. Nat Commun, 2022, 13(1):627.
doi: 10.1038/s41467-022-28244-5 pmid: 35110541 |
[9] | Landrum MJ, Lee JM, Benson M, et al. ClinVar:public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Res, 2016, 44(D1):D862-D868. |
[10] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
doi: 10.1038/nature17946 URL |
[11] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.
doi: 10.1038/nature24644 URL |
[12] |
Zhao DD, Li J, Li SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40.
doi: 10.1038/s41587-020-0592-2 URL |
[13] |
Kurt IC, Zhou RH, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nat Biotechnol, 2021, 39(1):41-46.
doi: 10.1038/s41587-020-0609-x URL |
[14] |
Koblan LW, Arbab M, Shen MW, et al. Efficient C·G-to-G·C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nat Biotechnol, 2021, 39(11):1414-1425.
doi: 10.1038/s41587-021-00938-z pmid: 34183861 |
[15] |
Rees HA, Liu DR. Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12):770-788.
doi: 10.1038/s41576-018-0059-1 URL |
[16] |
Porto EM, Komor AC, Slaymaker IM, et al. Base editing:advances and therapeutic opportunities[J]. Nat Rev Drug Discov, 2020, 19(12):839-859.
doi: 10.1038/s41573-020-0084-6 URL |
[17] |
Molla KA, Yang YN. CRISPR/cas-mediated base editing:technical considerations and practical applications[J]. Trends Biotechnol, 2019, 37(10):1121-1142.
doi: 10.1016/j.tibtech.2019.03.008 URL |
[18] |
Yarra R, Sahoo L. Base editing in rice:current progress, advances, limitations, and future perspectives[J]. Plant Cell Rep, 2021, 40(4):595-604.
doi: 10.1007/s00299-020-02656-3 URL |
[19] |
Mishra R, Joshi RK, Zhao KJ. Base editing in crops:current advances, limitations and future implications[J]. Plant Biotechnol J, 2020, 18(1):20-31.
doi: 10.1111/pbi.13225 URL |
[20] | Azameti MK, Dauda WP. Base editing in plants:applications, challenges, and future prospects[J]. Front Plant Sci, 2021, 12:664997. |
[21] |
Wang Y, Liu Y, Zheng P, et al. Microbial base editing:a powerful emerging technology for microbial genome engineering[J]. Trends Biotechnol, 2021, 39(2):165-180.
doi: 10.1016/j.tibtech.2020.06.010 pmid: 32680590 |
[22] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7):824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269 |
[23] | Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8):eaao4774. |
[24] |
Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9):843-846.
doi: 10.1038/nbt.4172 pmid: 29813047 |
[25] |
Gaudelli NM, Lam DK, Rees HA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application[J]. Nat Biotechnol, 2020, 38(7):892-900.
doi: 10.1038/s41587-020-0491-6 pmid: 32284586 |
[26] |
Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nat Biotechnol, 2020, 38(7):883-891.
doi: 10.1038/s41587-020-0453-z URL |
[27] |
Lapinaite A, Knott GJ, Palumbo CM, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503):566-571.
doi: 10.1126/science.abb1390 pmid: 32732424 |
[28] |
Yan DQ, Ren B, Liu L, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants[J]. Mol Plant, 2021, 14(5):722-731.
doi: 10.1016/j.molp.2021.02.007 URL |
[29] |
Wei C, Wang C, Jia M, et al. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor[J]. J Integr Plant Biol, 2021, 63(9):1595-1599.
doi: 10.1111/jipb.13089 URL |
[30] |
Zhang XH, Chen L, Zhu BY, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain[J]. Nat Cell Biol, 2020, 22(6):740-750.
doi: 10.1038/s41556-020-0518-8 URL |
[31] | Jinek M, Jiang FG, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. |
[32] |
Jiang FG, Doudna JA. CRISPR-cas9 structures and mechanisms[J]. Annu Rev Biophys, 2017, 46:505-529.
doi: 10.1146/annurev-biophys-062215-010822 URL |
[33] | Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):aaf8729. |
[34] |
Tan JJ, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement[J]. Nat Commun, 2019, 10(1):439.
doi: 10.1038/s41467-018-08034-8 URL |
[35] |
Tan JJ, Zhang F, Karcher D, et al. Expanding the genome-targeting scope and the site selectivity of high-precision base editors[J]. Nat Commun, 2020, 11(1):629.
doi: 10.1038/s41467-020-14465-z URL |
[36] | Hess GT, Frésard L, Han K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods, 2016, 13(12):1036-1042. |
[37] |
Kuscu C, Adli M. CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool[J]. Nat Methods, 2016, 13(12):983-984.
doi: 10.1038/nmeth.4076 pmid: 27898061 |
[38] |
Gehrke JM, Cervantes O, Clement MK, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nat Biotechnol, 2018, 36(10):977-982.
doi: 10.1038/nbt.4199 pmid: 30059493 |
[39] |
Wang X, Li JN, Wang Y, et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J]. Nat Biotechnol, 2018, 36(10):946-949.
doi: 10.1038/nbt.4198 URL |
[40] |
Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat Biotechnol, 2018, 36(10):950-953.
doi: 10.1038/nbt.4261 URL |
[41] | Lee S, Ding N, Sun YD, et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects[J]. Sci Adv, 2020, 6(29):eaba1773. |
[42] |
Liu ZQ, Chen SY, Shan HH, et al. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions[J]. BMC Biol, 2020, 18(1):111.
doi: 10.1186/s12915-020-00849-6 URL |
[43] |
Banno S, Nishida K, Arazoe T, et al. Deaminase-mediated multiplex genome editing in Escherichia coli[J]. Nat Microbiol, 2018, 3(4):423-429.
doi: 10.1038/s41564-017-0102-6 URL |
[44] |
Cheng TL, Li S, Yuan B, et al. Expanding C-T base editing toolkit with diversified cytidine deaminases[J]. Nat Commun, 2019, 10(1):3612.
doi: 10.1038/s41467-019-11562-6 URL |
[45] |
Shimatani Z, Kashojiya S, Takayama M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):441-443.
doi: 10.1038/nbt.3833 pmid: 28346401 |
[46] |
Kim YB, Komor AC, Levy JM, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4):371-376.
doi: 10.1038/nbt.3803 URL |
[47] |
Zhou CY, Sun YD, Yan R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278.
doi: 10.1038/s41586-019-1314-0 URL |
[48] |
Jiang W, Feng SJ, Huang SS, et al. BE-PLUS:a new base editing tool with broadened editing window and enhanced fidelity[J]. Cell Res, 2018, 28(8):855-861.
doi: 10.1038/s41422-018-0052-4 pmid: 29875396 |
[49] |
Grünewald J, Zhou RH, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7):861-864.
doi: 10.1038/s41587-020-0535-y pmid: 32483364 |
[50] |
Li C, Zhang R, Meng XB, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.
doi: 10.1038/s41587-019-0393-7 URL |
[51] |
Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7):865-869.
doi: 10.1038/s41587-020-0509-0 pmid: 32483365 |
[52] |
Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860.
doi: 10.1038/s41587-020-0527-y URL |
[53] |
Ma YQ, Zhang JY, Yin WJ, et al. Targeted AID-mediated mutagenesis(TAM)enables efficient genomic diversification in mammalian cells[J]. Nat Methods, 2016, 13(12):1029-1035.
doi: 10.1126/science.13.339.1029.b URL |
[54] |
Li XS, Wang Y, Liu YJ, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36(4):324-327.
doi: 10.1038/nbt.4102 URL |
[55] |
Xu XS, Chemparathy A, Zeng LP, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing[J]. Mol Cell, 2021, 81(20):4333-4345.
doi: 10.1016/j.molcel.2021.08.008 URL |
[56] |
Oakes BL, Fellmann C, Rishi H, et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification[J]. Cell, 2019, 176(1/2):254-267.
doi: 10.1016/j.cell.2018.11.052 URL |
[57] |
Huang TP, Zhao KT, Miller SM, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nat Biotechnol, 2019, 37(6):626-631.
doi: 10.1038/s41587-019-0134-y pmid: 31110355 |
[58] |
Liu YJ, Zhou CY, Huang SS, et al. A Cas-embedding strategy for minimizing off-target effects of DNA base editors[J]. Nat Commun, 2020, 11(1):6073.
doi: 10.1038/s41467-020-19690-0 URL |
[59] |
Chu S, Packer M, Rees H, et al. Rationally designed base editors for precise editing of the sickle cell disease mutation[J]. CRISPR J, 2021, 4(2):169-177.
doi: 10.1089/crispr.2020.0144 URL |
[60] |
Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441 |
[61] |
Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488):290-296.
doi: 10.1126/science.aba8853 URL |
[62] |
Tan JT, Zeng DC, Zhao YC, et al. PhieABEs:a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants[J]. Plant Biotechnol J, 2022, 20(5):934-943.
doi: 10.1111/pbi.13774 URL |
[63] |
Zhang CW, Wang Y, Wang FP, et al. Expanding base editing scope to near-PAMless with engineered CRISPR/Cas9 variants in plants[J]. Mol Plant, 2021, 14(2):191-194.
doi: 10.1016/j.molp.2020.12.016 URL |
[64] |
Qin RY, Li J, Liu XS, et al. SpCas9-NG self-targets the sgRNA sequence in plant genome editing[J]. Nat Plants, 2020, 6(3):197-201.
doi: 10.1038/s41477-020-0603-9 URL |
[65] |
Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826.
doi: 10.1038/nbt.2623 URL |
[66] |
Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol, 2013, 31(9):839-843.
doi: 10.1038/nbt.2673 pmid: 23934178 |
[67] |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832.
doi: 10.1038/nbt.2647 URL |
[68] |
Liang PP, Sun HW, Sun Y, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J]. Protein Cell, 2017, 8(8):601-611.
doi: 10.1007/s13238-017-0418-2 URL |
[69] |
Lee JK, Jeong E, Lee J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nat Commun, 2018, 9(1):3048.
doi: 10.1038/s41467-018-05477-x URL |
[70] |
Xu W, Song W, Yang YX, et al. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice[J]. BMC Plant Biol, 2019, 19(1):511.
doi: 10.1186/s12870-019-2131-1 URL |
[71] |
Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4):430-435.
doi: 10.1038/s41587-019-0050-1 URL |
[72] |
Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284.
doi: 10.1038/nbt.2808 URL |
[73] |
Rose JC, Popp NA, Richardson CD, et al. Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs[J]. Nat Commun, 2020, 11(1):2697.
doi: 10.1038/s41467-020-16542-9 URL |
[74] | Jang HK, Jo DH, Lee SN, et al. High-purity production and precise editing of DNA base editing ribonucleoproteins[J]. Sci Adv, 2021, 7(35):eabg2661. |
[75] |
Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437):289-292.
doi: 10.1126/science.aav9973 URL |
[76] |
Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437):292-295.
doi: 10.1126/science.aaw7166 URL |
[77] |
Doman JL, Raguram A, Newby GA, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nat Biotechnol, 2020, 38(5):620-628.
doi: 10.1038/s41587-020-0414-6 URL |
[78] |
Zuo EW, Sun YD, Yuan TL, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J]. Nat Methods, 2020, 17(6):600-604.
doi: 10.1038/s41592-020-0832-x URL |
[79] |
Yu Y, Leete TC, Born DA, et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity[J]. Nat Commun, 2020, 11(1):2052.
doi: 10.1038/s41467-020-15887-5 URL |
[80] |
Grünewald J, Zhou RH, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756):433-437.
doi: 10.1038/s41586-019-1161-z URL |
[81] |
Grünewald J, Zhou RH, Iyer S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nat Biotechnol, 2019, 37(9):1041-1048.
doi: 10.1038/s41587-019-0236-6 pmid: 31477922 |
[82] | Rees HA, Wilson C, Doman JL, et al. Analysis and minimization of cellular RNA editing by DNA adenine base editors[J]. Sci Adv, 2019, 5(5):eaax5717. |
[83] |
Li JN, Yu WX, Huang SS, et al. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity[J]. Nat Commun, 2021, 12(1):2287.
doi: 10.1038/s41467-021-22519-z URL |
[84] |
Newby GA, Yen JS, Woodard KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice[J]. Nature, 2021, 595(7866):295-302.
doi: 10.1038/s41586-021-03609-w URL |
[85] |
Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature, 2021, 593(7859):429-434.
doi: 10.1038/s41586-021-03534-y URL |
[86] |
Kim K, Ryu SM, Kim ST, et al. Highly efficient RNA-guided base editing in mouse embryos[J]. Nat Biotechnol, 2017, 35(5):435-437.
doi: 10.1038/nbt.3816 URL |
[87] |
Koblan LW, Erdos MR, Wilson C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843):608-614.
doi: 10.1038/s41586-020-03086-7 URL |
[88] |
Villiger L, Grisch-Chan HM, Lindsay H, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J]. Nat Med, 2018, 24(10):1519-1525.
doi: 10.1038/s41591-018-0209-1 pmid: 30297904 |
[89] |
Bose SK, White BM, Kashyap MV, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J]. Nat Commun, 2021, 12(1):4291.
doi: 10.1038/s41467-021-24443-8 URL |
[90] |
Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5):438-440.
doi: 10.1038/nbt.3811 URL |
[91] |
Hua K, Tao XP, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants[J]. Plant Biotechnol J, 2019, 17(2):499-504.
doi: 10.1111/pbi.12993 URL |
[92] |
Lu YM, Zhu JK. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(3):523-525.
doi: 10.1016/j.molp.2016.11.013 URL |
[93] |
Li JY, Sun YW, Du JL, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(3):526-529.
doi: 10.1016/j.molp.2016.12.001 URL |
[94] |
Kuang YJ, Li SF, Ren B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Mol Plant, 2020, 13(4):565-572.
doi: 10.1016/j.molp.2020.01.010 URL |
[95] |
Kuscu C, Parlak M, Tufan TR, et al. CRISPR-STOP:gene silencing through base-editing-induced nonsense mutations[J]. Nat Methods, 2017, 14(7):710-712.
doi: 10.1038/nmeth.4327 pmid: 28581493 |
[96] |
Billon P, Bryant EE, Joseph SA, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons[J]. Mol Cell, 2017, 67(6):1068-1079.
doi: 10.1016/j.molcel.2017.08.008 |
[97] | Dang L, Li GL, Wang XJ, et al. Comparison of gene disruption induced by cytosine base editing-mediated iSTOP with CRISPR/Cas9-mediated frameshift[J]. Cell Prolif, 2020, 53(5):e12820. |
[98] |
Ren QR, Sretenovic S, Liu GQ, et al. Improved plant cytosine base editors with high editing activity, purity, and specificity[J]. Plant Biotechnol J, 2021, 19(10):2052-2068.
doi: 10.1111/pbi.13635 URL |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[3] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[4] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[5] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[6] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[7] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[8] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[9] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[10] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[11] | LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing [J]. Biotechnology Bulletin, 2023, 39(2): 63-69. |
[12] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[13] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[14] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[15] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||