Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 59-72.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0342
Previous Articles Next Articles
LIU Jia-xin1,2,3(), ZHANG Hui-long1,2,3, ZOU Rong-song1,2,3, YANG Xiu-yan1,2,3, ZHU Jian-feng1,2,3(), ZHANG Hua-xin1,2,3()
Received:
2022-03-22
Online:
2023-01-26
Published:
2023-02-02
Contact:
ZHU Jian-feng,ZHANG Hua-xin
E-mail:liujiaxin19980707@163.com;jfzhu@caf.ac.cn;zhanghx1998@126.com
LIU Jia-xin, ZHANG Hui-long, ZOU Rong-song, YANG Xiu-yan, ZHU Jian-feng, ZHANG Hua-xin. Research Progress in Na+ Antiport and Physiological Growth Mechanisms of Differernt Halophytes Adapted to Salt Stress[J]. Biotechnology Bulletin, 2023, 39(1): 59-72.
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
NsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
SsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐地碱蓬Suaeda salsa | [ |
SbNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化和维持离子稳态的过程 | 海蓬子Sal Icornia brachiate | [ |
SeNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐角草Sal Icornia europaea | [ |
KfNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 可能增强将Na+区隔化至液泡的能力 | 盐爪爪Kalidium foliatum | [ |
HcNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔化 | 盐穗木Halostachys caspica | [ |
NsSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将胞质中过量的Na+排出到胞外 | 西伯利亚白刺Nitraria sibirica | [ |
SsHKT1 | 高亲和性K+转运蛋白基因 | 减少根木质部Na+回收,协调SsSOS1和SsNHX1维持Na+积累 | 盐地碱蓬Suaeda salsa | [ |
SsHAK2 | 高亲和性K+转运蛋白基因 | 参与K+吸收及转运过程 | 盐地碱蓬Suaeda salsa | [ |
AQP | 编码水通道蛋白基因 | 离子区隔化 | 盐地碱蓬Suaeda salsa | [ |
HcPIP1 | 水通道蛋白家族亚类质膜内嵌蛋白基因 | 在胁迫时能够通过增加根的生长以抵御胁迫的影响 | 盐穗木Halostachys caspica | [ |
NsVP1 | 液泡膜H+-PPase基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
KfVP1 | 液泡膜H+-PPase基因 | 离子的调控运输中发挥作用 | 盐爪爪Kalidium foliatum | [ |
HcVP1 | 液泡膜H+-PPase基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
HcVHA-B | 液泡膜H+-ATPase亚基B基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
Table 1 Key salt-tolerant genes in euhalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
NsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
SsNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐地碱蓬Suaeda salsa | [ |
SbNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化和维持离子稳态的过程 | 海蓬子Sal Icornia brachiate | [ |
SeNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 调控Na+液泡区隔化 | 盐角草Sal Icornia europaea | [ |
KfNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 可能增强将Na+区隔化至液泡的能力 | 盐爪爪Kalidium foliatum | [ |
HcNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔化 | 盐穗木Halostachys caspica | [ |
NsSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将胞质中过量的Na+排出到胞外 | 西伯利亚白刺Nitraria sibirica | [ |
SsHKT1 | 高亲和性K+转运蛋白基因 | 减少根木质部Na+回收,协调SsSOS1和SsNHX1维持Na+积累 | 盐地碱蓬Suaeda salsa | [ |
SsHAK2 | 高亲和性K+转运蛋白基因 | 参与K+吸收及转运过程 | 盐地碱蓬Suaeda salsa | [ |
AQP | 编码水通道蛋白基因 | 离子区隔化 | 盐地碱蓬Suaeda salsa | [ |
HcPIP1 | 水通道蛋白家族亚类质膜内嵌蛋白基因 | 在胁迫时能够通过增加根的生长以抵御胁迫的影响 | 盐穗木Halostachys caspica | [ |
NsVP1 | 液泡膜H+-PPase基因 | 调控Na+液泡区隔化 | 西伯利亚白刺Nitraria sibirica | [ |
KfVP1 | 液泡膜H+-PPase基因 | 离子的调控运输中发挥作用 | 盐爪爪Kalidium foliatum | [ |
HcVP1 | 液泡膜H+-PPase基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
HcVHA-B | 液泡膜H+-ATPase亚基B基因 | 增加液泡中Na+的积累来增强转基因拟南芥的耐盐性 | 盐穗木Halostachys caspica | [ |
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
SaNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | 控制液泡膜中活性K+的摄取,同时调节气孔的关闭 | 互花米草Spartina alterniflora | [ |
AmNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+转运到液泡中 | 海榄雌Avicennia maritima | [ |
AgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 保持离子平衡 | 北滨黎Atriplex gmelini | [ |
McNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
LsNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+的囊泡化转运活动 | 中华补血草Limonium sinense | [ |
BgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+区隔化作用 | 木榄Bruguiera gymnorrhiz | [ |
AmSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将多余的Na+泵出细胞 | 海榄雌Avicennia maritima | [ |
AcSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
AcHKT1 | 高亲和K+转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McHKT1 | 高亲和K+转运蛋白基因 | 将Na+转运到液泡中 | 冰叶日中花Mesembryanthemum crystallinum | [ |
ThVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 具有抗逆性作用 | 刚毛柽柳Tamarix hispida | [ |
SaVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 参与能量供应 | 互花米草Spartina alterniflora | [ |
AhVP | 液泡膜H+-PPase基因 | 对渗透和/或离子压力的耐受性 | 滨藜Atriplex halimus | [ |
ThVP1 | 液泡膜H+-PPase基因 | 参与Na+的隔离 | 刚毛柽柳Tamarix hispida | [ |
AmHA1 | 质膜H+-ATPase基因 | 参与能量供应 | 海榄雌Avicennia maritima | [ |
PIP and TIP | 水通道蛋白基因 | 参与盐腺脱盐过程中水的再吸收 | 海茄冬Avicennia officinalis | [ |
CLC | 质膜Cl-通道基因 | 将Cl-区域化为囊泡维持电荷平衡 | 二色补血草Limonium bicolor | [ |
Table 2 Key salt-tolerant genes in recretohalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源 Gene resource | 参考文献 Reference |
---|---|---|---|---|
SaNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | 控制液泡膜中活性K+的摄取,同时调节气孔的关闭 | 互花米草Spartina alterniflora | [ |
AmNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+转运到液泡中 | 海榄雌Avicennia maritima | [ |
AgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 保持离子平衡 | 北滨黎Atriplex gmelini | [ |
McNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
LsNHX2 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+的囊泡化转运活动 | 中华补血草Limonium sinense | [ |
BgNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | Na+区隔化作用 | 木榄Bruguiera gymnorrhiz | [ |
AmSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将多余的Na+泵出细胞 | 海榄雌Avicennia maritima | [ |
AcSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McSOS1 | 质膜Na+/H+逆向转运蛋白基因 | 离子区隔 | 冰叶日中花Mesembryanthemum crystallinum | [ |
AcHKT1 | 高亲和K+转运蛋白基因 | 盐囊泡Na+积累 | 四翅滨藜Atriplex canescens | [ |
McHKT1 | 高亲和K+转运蛋白基因 | 将Na+转运到液泡中 | 冰叶日中花Mesembryanthemum crystallinum | [ |
ThVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 具有抗逆性作用 | 刚毛柽柳Tamarix hispida | [ |
SaVHAc1 | 液泡膜H+-ATPase亚基c1基因 | 参与能量供应 | 互花米草Spartina alterniflora | [ |
AhVP | 液泡膜H+-PPase基因 | 对渗透和/或离子压力的耐受性 | 滨藜Atriplex halimus | [ |
ThVP1 | 液泡膜H+-PPase基因 | 参与Na+的隔离 | 刚毛柽柳Tamarix hispida | [ |
AmHA1 | 质膜H+-ATPase基因 | 参与能量供应 | 海榄雌Avicennia maritima | [ |
PIP and TIP | 水通道蛋白基因 | 参与盐腺脱盐过程中水的再吸收 | 海茄冬Avicennia officinalis | [ |
CLC | 质膜Cl-通道基因 | 将Cl-区域化为囊泡维持电荷平衡 | 二色补血草Limonium bicolor | [ |
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源Gene resource | 参考文献 Reference |
---|---|---|---|---|
cNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 柑橘Citrus×paradisi | [ | |
PtNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅Puccinellia tenuiflora | [ |
Pt SOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅P. tenuiflora | [ |
Pt HKT1;5 | 高亲和K+转运蛋白基因 | 将Na+从木质部排到木质部薄壁细胞 | 小花碱茅P. tenuiflora | [ |
Table 3 Key salt-tolerant genes in pseudohalophytes
基因 Gene | 基因类型 Gene type | 基因功能 Gene function | 基因来源Gene resource | 参考文献 Reference |
---|---|---|---|---|
cNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 柑橘Citrus×paradisi | [ | |
PtNHX1 | 液泡膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅Puccinellia tenuiflora | [ |
Pt SOS1 | 质膜Na+/H+逆向转运蛋白基因 | 将Na+从体内排出 | 小花碱茅P. tenuiflora | [ |
Pt HKT1;5 | 高亲和K+转运蛋白基因 | 将Na+从木质部排到木质部薄壁细胞 | 小花碱茅P. tenuiflora | [ |
Fig. 1 Model diagram of Na+ antiport mechanisms for salt tolerance in three halophytes (a):In euhalophytes,some Na+ are excreted out of the cell through plasma membrane Na+/H+ antiporter SOS1,and require plasma membrane H+-ATPase enzymatic hydrolysis to provide energy and H+,while the other enter the vacuole from the cytoplasm through vacuole membrane Na+/H+ antiporter NHX. vacuolar membrane H+-ATPase enzyme and vacuolar H+-PPase enzyme hydrolysis to provide energy and H+[104].(b):Recretohalophytes have a special salt-secreting structure called salt bladder,Na+ enters salt bladder from mesophyll cells via stalk cell,and the cytoplasmic Na+ is excreted under the vesicle cell of plasma membrane Na+/H+ antitransporter SOS1. The other Na+ in the cytoplasm is transported to the vacuole through the vacuolar membrane Na+/H+ antiporter NHX for separation. Meanwhile,plasma membrane H+-ATPase,vacuolar membrane H+-ATPase and vacuolar H+-PPase enzymes are required for hydrolysis to provide energy and H+[105].(c):In the roots of pseudohalophytes,Na+ enters into xylem parenchyma cells through the highly affinity K+ transporter HKT1[29],and the cytoplasmic Na+ is excreted into vacuoles through the plasmic membrane Na+/H+ antiporter SOS1. This process also requires plasma membrane H+-ATPase,vacuolar membrane H+-ATPase and vacuolar H+-PPase enzymes hydrolysis to provide energy and H+. HKT1:High-affinity potassium transporter 1;SOS1:plasma membrane Na+/H+ exchanger 1;NHX:vacuolar Na+/H+ antiporter 1;ATP:adenosine triphosphate;ADP:adenosine diphosphate;PPi:pyrophosphoric acid;PM-ATPase:plasma membrane H+-ATPase;V-ATPase:vacuolar H+-ATPase;V-PPase:vacuolar H+-pyrophosphatas
[1] | 赵可夫, 李法曾, 张福锁. 中国盐生植物[M]. 2版. 北京: 科学出版社, 2013. |
Zhao KF, Li FZ, Zhang FS. Halophytes in China[M]. 2nd ed. Beijing: Science Press, 2013. | |
[2] | 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. |
Wang ZQ, Zhu SQ, Yu RP, et al. Chinese Saline soil[M]. Beijing: China Science Publishing, 1993. | |
[3] |
Munns R. Genes and salt tolerance:bringing them together[J]. New Phytol, 2005, 167(3): 645-663.
doi: 10.1111/j.1469-8137.2005.01487.x pmid: 16101905 |
[4] |
Sudhir P, Murthy SDS. Effects of salt stress on basic processes of photosynthesis[J]. Photosynthetica, 2004, 42(4): 481-486.
doi: 10.1007/S11099-005-0001-6 URL |
[5] | Meng XQ, Zhou J, Sui N. Mechanisms of salt tolerance in halophytes:current understanding and recent advances[J]. Open Life Sci, 2018, 13:149-154. |
[6] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
Qi Q, Ma SR, Xu WD. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Mol Plant Breed, 2020, 18(8): 2741-2746. | |
[7] |
Bejaoui F, Salas JJ, Nouairi I, et al. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress[J]. J Plant Physiol, 2016, 198:32-38.
doi: 10.1016/j.jplph.2016.03.018 URL |
[8] | Marschner H. Mineral nutrition of higher plants[M]. 3rd ed. New York: Academic Press, 1986. |
[9] |
Gupta NK, Meena SK, Gupta S, et al. Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance[J]. Photosynthetica, 2002, 40(4): 535-539.
doi: 10.1023/A:1024343817290 URL |
[10] | 陈银华, 朱红林, 沙爱华, 等. 植物耐盐研究进展[J]. 海南大学学报:自然科学版, 2007, 25(1): 79-82. |
Chen YH, Zhu HL, Sha AH, et al. Research advance in plant toler-ance to Sal Inity stress[J]. Nat Sci J Hainan Univ, 2007, 25(1): 79-82. | |
[11] | 张焱梅, 赵晓东, 马梦慈, 等. 混合盐碱胁迫对盐地碱蓬种子萌发的影响[J]. 农业科技与信息, 2020(22): 47-53. |
Zhang YM, Zhao XD, Ma MC, et al. Effects of mixed Saline alkali stress on Seed Germination of Suaeda salsa[J]. Agric Sci Technol Inf, 2020(22): 47-53. | |
[12] |
Flowers TJ, Hajibagheri MA, Clipson NJW. Halophytes[J]. Q Rev Biol, 1986, 61(3): 313-337.
doi: 10.1086/415032 URL |
[13] | 倪细炉, 岳延峰, 田英, 等. 4种盐生植物抗盐能力的综合评价[J]. 中国农学通报, 2010, 26(6): 138-141. |
Ni XL, Yue YF, Tian Y, et al. Comprehensive evaluation of salt-resistance traits in four halophytes[J]. Chin Agric Sci Bull, 2010, 26(6): 138-141. | |
[14] | Breckle SW. Sal Inity tolerance of different halophyte types[M]// Bassam N, Dambroth M, Loughman BC. Genetic aspects of plant mineral nutrition. Dordrecht: Kluwer Academic Publisher, 1990, 167-175. |
[15] |
Rozema J, Schat H. Salt tolerance of halophytes, research questions reviewed in the perspective of Saline agriculture[J]. Environ Exp Bot, 2013, 92:83-95.
doi: 10.1016/j.envexpbot.2012.08.004 URL |
[16] | 王虹, 齐政, 张富春. 不同浓度盐胁迫下盐穗木叶片结构的比较观察[J]. 新疆农业科学, 2016, 53(11): 2098-2105. |
Wang H, Qi Z, Zhang FC. Leaf anatomical structure of Halostachys caspica under different concentrations of salt stress[J]. Xinjiang Agric Sci, 2016, 53(11): 2098-2105. | |
[17] | Gao TP, Guo R, Fang XW, et al. Effects on antioxidant enzyme activities and osmolytes in Halocnemum strobilaceum under salt stress[J]. Sciences in Cold and Arid Regions, 2016, 8(1): 65-71. |
[18] | 刘彧, 丁同楼, 王宝山. 不同自然盐渍生境下盐地碱蓬叶片肉质化研究[J]. 山东师范大学学报:自然科学版, 2006, 21(2): 102-104. |
Liu Y, Ding TL, Wang BS. Study on the leaf succulence of Suaeda salsa under differently natural Saline environments[J]. J Shandong Norm Univ Nat Sci, 2006, 21(2): 102-104. | |
[19] | 苏丹. 盐节木耐盐的生理生化特性及BADH基因克隆研究[D]. 兰州: 甘肃农业大学, 2012. |
Su D. Studies on physiological and biochemical responses of Halocnermum strobilaceum to salt stress and thecloning of its betaine aldehyde dehydrogenase gene[D]. Lanzhou: Gansu Agricultural University, 2012. | |
[20] | 唐晓倩. 盐胁迫下西伯利亚白刺幼苗Na+转运与区隔化生理机制研究[D]. 北京: 中国林业科学研究院, 2019. |
Tang XQ. The physiological mechanism of Na+ transport and compartmentalization in Nitraria sibirica Pall. seedlings under salt stress[D]. Beijing: Chinese Academy of Forestry, 2019. | |
[21] |
Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na +/H + antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050 |
[22] | 陈首业. 利用西伯利亚白刺Na+/H+逆向转运蛋白基因提高转基因杨树耐盐性的研究[D]. 呼和浩特: 内蒙古大学, 2021. |
Chen SY. Study on salt-tolerance improvement of poplar by transformation using Na+/H+ antiporter genes from Nitraria sibirica Pall.[D]. Hohhot: Inner Mongolia University, 2021. | |
[23] |
Dietz KJ, Tavakoli N, Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. J Exp Bot, 2001, 52(363): 1969-1980.
doi: 10.1093/jexbot/52.363.1969 pmid: 11559732 |
[24] | 张会龙, 赵健宇, 武海雯, 等. 植物液泡膜H+-PPase在耐盐性调控中的作用[J]. 植物生理学报, 2022, 58(2): 247-253. |
Zhang HL, Zhao JY, Wu HW, et al. Role of plant vacuolar H+-pyro-phosphatase in salt tolerance[J]. Plant Physiol J, 2022, 58(2): 247-253. | |
[25] |
Chen M, Song J, Wang BS. NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus[J]. Acta Physiol Plant, 2010, 32(1): 27-36.
doi: 10.1007/s11738-009-0371-7 URL |
[26] |
Liu W, Yuan XT, Zhang YY, et al. Effects of salt stress and exogenous Ca2+ on Na+ compartmentalization, ion pump activities of tonoplast and plasma membrane in Nitraria tangutorum Bobr. leaves[J]. Acta Physiol Plant, 2014, 36(8): 2183-2193.
doi: 10.1007/s11738-014-1595-8 URL |
[27] |
Qiu QS, Guo Y, Dietrich MA, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. PNAS, 2002, 99(12): 8436-8441.
doi: 10.1073/pnas.122224699 URL |
[28] |
罗子敬, 孙宇涵, 卢楠, 等. 杨树耐盐机制及转基因研究进展[J]. 核农学报, 2017, 31(3): 482-492.
doi: 10.11869/j.issn.100-8551.2017.03.0482 |
Luo ZJ, Sun YH, Lu N, et al. Research advances on salt-tolerance mechanism and genetic transformation of poplar[J]. J Nucl Agric Sci, 2017, 31(3): 482-492.
doi: 10.11869/j.issn.100-8551.2017.03.0482 |
|
[29] |
Deinlein U, Stephan AB, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6): 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845 |
[30] |
Huang Y, Zhang XX, Li YH, et al. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. J Integr Agric, 2018, 17(12): 2612-2623.
doi: 10.1016/S2095-3119(18)61998-7 URL |
[31] |
Wang WY, Liu YQ, Duan HR, et al. SsHKT1;1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under Saline conditions[J]. Plant Soil, 2020, 449(1/2): 117-131.
doi: 10.1007/s11104-020-04463-x URL |
[32] |
Jha A, Joshi M, Yadav NS, et al. Cloning and characterization of the Sal Icornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress[J]. Mol Biol Rep, 2011, 38(3): 1965-1973.
doi: 10.1007/s11033-010-0318-5 URL |
[33] | Pandey S, Patel MK, Mishra A, et al. In planta transformed cumin(Cuminum cyminum L.)plants, overexpressing the SbNHX1 gene showed enhanced salt endurance[J]. PLoS One, 2016, 11(7): e0159349. |
[34] | Yang XL. Over-expressing Sal Icornia europaea(SeNHX1)gene in tobacco improves tolerance to salt[J]. Afr J Biotechnol, 2011, 10(73): 16452-16460. |
[35] |
银芳柳, 毛晓菲, 曾幼玲. 盐生植物盐爪爪液泡膜钠氢反向运输载体基因(KfNHX1)遗传转化拟南芥的耐盐性鉴定[J]. 新疆农业科学, 2021, 58(3): 565-572.
doi: 10.6048/j.issn.1001-4330.2021.03.020 |
Yin FL, Mao XF, Zeng YL. Salt-tolerant identification of genetic transformation in Arabidopsis with the KfNHX1 gene from the halo-phyte Kalidium foliatum[J]. Xinjiang Agric Sci, 2021, 58(3): 565-572. | |
[36] |
Guan B, Hu YZ, Zeng YL, et al. Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene(HcNHX1)from Halostachys caspica[J]. Mol Biol Rep, 2011, 38(3): 1889-1899.
doi: 10.1007/s11033-010-0307-8 pmid: 20886297 |
[37] | 关波. 盐穗木液泡膜Na+/H+反向运输载体基因的克隆和功能分析[D]. 乌鲁木齐: 新疆大学, 2010. |
Guan B. Molecular cloning and functional analysis of a vacuolar Na+/H+ antiporter gene(HcNHX1) from Halostachys caspica[D]. Urumqi: Xinjiang University, 2010. | |
[38] | 耿新, 楼静, 鄂一岚, 等. 西伯利亚白刺质膜Na+/H+逆向转运蛋白基因NsSOS1的分离及表达分析[J]. 西北植物学报, 2018, 38(8): 1428-1436. |
Geng X, Lou J, E YL, et al. Isolation and expression analysis of plasmalemma Na+/H+ antiporter gene from Nitraria sibirica[J]. Acta Bot Boreali Occidentalia Sin, 2018, 38(8): 1428-1436. | |
[39] | 段慧荣, 王锁民. 盐地碱蓬高亲和性K+转运蛋白基因SsHAK2的克隆与表达模式分析[J]. 草业学报, 2016, 25(2): 114-123. |
Duan HR, Wang SM. Cloning and expression analysis of a high-affinity K+ transporter gene SsHAK2 in Suaeda salsa[J]. Acta Prataculturae Sin, 2016, 25(2): 114-123. | |
[40] |
Qi CH, Chen M, Song J, et al. Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under Sal Inity[J]. Plant Sci, 2009, 176(2): 200-205.
doi: 10.1016/j.plantsci.2008.09.019 URL |
[41] | 张冀, 彭丹, 张丽丽, 等. 盐穗木水通道蛋白基因的克隆与功能鉴定[J]. 基因组学与应用生物学, 2017, 36(11): 4793-4801. |
Zhang J, Peng D, Zhang LL, et al. Cloning and function identification of an aquaporin gene from Halostachys caspica[J]. Genom Appl Biol, 2017, 36(11): 4793-4801. | |
[42] |
Yao MH, Zeng YL, Liu L, et al. Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana[J]. Mol Biol Rep, 2012, 39(8): 7989-7996.
doi: 10.1007/s11033-012-1645-5 URL |
[43] | Hu YZ, Zeng YL, Guan B, et al. Overexpression of a vacuolar H+-pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana[J]. Plant Cell Tissue Organ Cult PCTOC, 2012, 108(1): 63-71. |
[44] | 巩学蕊, 鉴晔, 杨美娟. 藜盐囊泡形态结构及发育研究[J]. 科技风, 2020(29): 164-165. |
Gong XR, Jian Y, Yang MJ. Study on morphological structure and development of SaltBladders of Chenopodium album L.[J]. Technol Wind, 2020(29): 164-165. | |
[45] | 张乐. 盐囊泡在四翅滨藜耐盐性中的作用研究[D]. 兰州: 兰州大学, 2020. |
Zhang(L/Y). The study on the role of salt bladders in the salt tolerance of Atriplex canescens[D]. Lanzhou: Lanzhou University, 2020. | |
[46] |
Dassanayake M, Larkin JC. Making plants break a sweat:the structure, function, and evolution of plant salt glands[J]. Front Plant Sci, 2017, 8:406.
doi: 10.3389/fpls.2017.00406 pmid: 28400779 |
[47] | 薛琼琼, 赵露露, 王云霞, 等. 盐生植物耐盐性研究进展[J]. 中国野生植物资源, 2021, 40(5): 60-65. |
Xue QQ, Zhao LL, Wang YX, et al. Research progress on salt tolerance of halophytes[J]. Chin Wild Plant Resour, 2021, 40(5): 60-65. | |
[48] |
Kuster VC, da Silva LC, Meira RMSA. Anatomical and histochemical evidence of leaf salt glands in Jacquinia armillaris Jacq. (Primulaceae)[J]. Flora, 2020, 262:151493.
doi: 10.1016/j.flora.2019.151493 URL |
[49] | Oi T, Miyake H, Taniguchi M. Salt excretion through the cuticle without disintegration of fine structures in the salt glands of Rhodes grass(Chloris gayana Kunth)[J]. Flora Morphol Distribution Funct Ecol Plants, 2014, 209(3/4): 185-190. |
[50] | 周三, 韩军丽, 赵可夫. 泌盐盐生植物研究进展[J]. 应用与环境生物学报, 2001, 7(5): 496-501. |
Zhou S, Han JL, Zhao KF. Advance of study on recretohalophytes[J]. Chin J Appl Environ Biol, 2001, 7(5): 496-501. | |
[51] | 冯中涛. 囊泡运输在二色补血草盐腺泌盐中的作用研究[D]. 济南: 山东师范大学, 2015. |
Feng ZT. Study on the role of vesicle trafficking in salt secretion of salt glands of Limonium bicolor[D]. Jinan: Shandong Normal University, 2015. | |
[52] |
Lu CX, Yuan F, Guo JR, et al. Current understanding of role of vesicular transport in salt secretion by salt glands in recretohalophytes[J]. Int J Mol Sci, 2021, 22(4): 2203.
doi: 10.3390/ijms22042203 URL |
[53] | Arisz WH, Camphuis IJ, Heikens H, et al. The secretion of the salt glands of Limonium latifolium ktze[J]. Acta Bot Neerlandica, 1955, 4(3): 322-338. |
[54] | Yuan F, Leng BY, Wang BS. Progress in studying salt secretion from the salt glands in recretohalophytes:how do plants secrete salt?[J]. Front Plant Sci, 2016, 7:977. |
[55] |
Semenova GA, Fomina IR, Biel KY. Structural features of the salt glands of the leaf of Distichlis spicata ‘Yensen 4a’(Poaceae)[J]. Protoplasma, 2010, 240:75-82.
doi: 10.1007/s00709-009-0092-1 pmid: 19997947 |
[56] |
Yuan F, Lyu MJA, Leng BY, et al. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation[J]. Plant Cell Environ, 2015, 38(8): 1637-1657.
doi: 10.1111/pce.12514 URL |
[57] |
Ziegler H, Lüttge U. The salt-glands of Limonium Vulgare:II. The localisation of chloride[J]. Planta, 1967, 74(1): 1-17.
doi: 10.1007/BF00385168 pmid: 24549869 |
[58] |
Feng ZT, Sun QJ, Deng YQ, et al. Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor[J]. Acta Physiol Plant, 2014, 36(10): 2729-2741.
doi: 10.1007/s11738-014-1644-3 URL |
[59] |
Wilson H, Mycock D, Weiersbye IM. The salt glands of Tamarix usneoides E. Mey. ex Bunge(South African Salt Cedar)[J]. Int J Phytoremediation, 2017, 19(6): 587-595.
doi: 10.1080/15226514.2016.1244163 URL |
[60] |
Levering CA, Thomson WW. The ultrastructure of the salt gland of Spartina foliosa[J]. Planta, 1971, 97(3): 183-196.
doi: 10.1007/BF00389200 pmid: 24493239 |
[61] |
Shabala S, Bose J, Hedrich R. Salt bladders:do they matter?[J]. Trends Plant Sci, 2014, 19(11): 687-691.
doi: 10.1016/j.tplants.2014.09.001 pmid: 25361704 |
[62] |
Böhm J, Messerer M, Müller HM, et al. Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa[J]. Curr Biol, 2018, 28(19): 3075-3085. e7.
doi: 10.1016/j.cub.2018.08.004 URL |
[63] | 郭欢, 王锁民, 包爱科. 盐生植物四翅滨藜盐囊泡Na+积累分子机制初探[C]. 广州: 中国草学会年会, 2017. |
Guo H, Wang SM, Bao AK. Initial insights into the molecular mechanism of Na+accumulation in halophyte Atriplex canescens vesicles[C]. Guangzhou: A-nnual Meeting of Chinese Grass Society, 2017. | |
[64] |
Barkla BJ, Vera-Estrella R, Raymond C. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins[J]. BMC Plant Biol, 2016, 16(1): 110.
doi: 10.1186/s12870-016-0797-1 URL |
[65] |
Chen J, Xiao Q, Wu FH, et al. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high Sal Inity[J]. Tree Physiol, 2010, 30(12): 1570-1585.
doi: 10.1093/treephys/tpq086 URL |
[66] | 张春蕊, 贾园园, 王艳敏, 等. 刚毛柽柳液泡膜H+-PPase基因的克隆与胁迫下的表达分析[J]. 西北植物学报, 2016, 36(5): 881-887. |
Zhang CR, Jia YY, Wang YM, et al. Cloning and expression analysis of a vacuolar H+-PPase gene from Tamarix hispida[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(5): 881-887. | |
[67] |
Panda A, Rangani J, Parida AK. Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon Sal Icornicum involved in salt tolerance[J]. J Biotechnol, 2020, 324:143-161.
doi: 10.1016/j.jbiotec.2020.10.011 URL |
[68] |
Hamada A, Shono M, Xia T, et al. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini[J]. Plant Mol Biol, 2001, 46(1): 35-42.
doi: 10.1023/a:1010603222673 pmid: 11437248 |
[69] |
Zhang GH, Su Q, An LJ, et al. Characterization and expression of a vacuolar Na+/H+antiporter gene from the monocot halophyte Aeluropus littoralis[J]. Plant Physiol Biochem, 2008, 46(2): 117-126.
doi: 10.1016/j.plaphy.2007.10.022 URL |
[70] | Yuan F, Xu YY, Leng BY, et al. Beneficial effects of salt on halophyte growth:morphology, cells, and genes[J]. Open Life Sci, 2019, 14:191-200. |
[71] |
Dang ZH, Zheng LL, Wang J, et al. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna[J]. BMC Genomics, 2013, 14:29.
doi: 10.1186/1471-2164-14-29 pmid: 23324106 |
[72] |
Yuan F, Lyu MJA, Leng BY, et al. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland[J]. Plant Mol Biol, 2016, 91(3): 241-256.
doi: 10.1007/s11103-016-0460-0 URL |
[73] | 周梦岩, 王涛涛, 陈冉红, 等. 互花米草NHX2基因的克隆与功能鉴定[J]. 西北植物学报, 2019, 39(12): 2093-2099. |
Zhou MY, Wang TT, Chen RH, et al. Cloning and function identification of NHX2 gene from Spartina alterniflora[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(12): 2093-2099. | |
[74] |
Chen M, Song J, Wang BS. NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus[J]. Acta Physiol Plant, 2010, 32(1): 27-36.
doi: 10.1007/s11738-009-0371-7 URL |
[75] |
Tran DQ, Konishi A, Cushman JC, et al. Ion accumulation and expression of ion homeostasis-related genes associated with halophilism, NaCl-promoted growth in a halophyte Mesembryanthemum crystallinum L[J]. Plant Prod Sci, 2020, 23(1): 91-102.
doi: 10.1080/1343943X.2019.1647788 |
[76] | 李维焕. 卤代甲烷甲基转移酶基因转化烟草的研究及中华补血草LsNHXs基因的功能研究[D]. 济南: 山东师范大学, 2008. |
Li WH. Transformation of tobacco with MCT gene and the functional analysis of LsNHXs genes from Limonium sinense[D]. Jinan: Shandong Normal University, 2008. | |
[77] | 郭庆水, 徐立新, 袁潜华, 等. 木榄Na+/H+逆向转运蛋白基因的克隆[J]. 热带生物学报, 2010, 1(2): 105-109. |
Guo QS, Xu LX, Yuan QH, et al. Cloning of Na+/H+ antiporter gene from Bruguiera gymnorrhiz(L.)LAM[J]. J Trop Org, 2010, 1(2): 105-109. | |
[78] |
Cosentino C, Fischer-Schliebs E, Bertl A, et al. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum[J]. New Phytol, 2010, 186(3): 669-680.
doi: 10.1111/j.1469-8137.2010.03208.x pmid: 20298477 |
[79] |
Su H, Balderas E, Vera-Estrella R, et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Mol Biol, 2003, 52(5): 967-980.
pmid: 14558658 |
[80] |
Gao CQ, Wang YC, Jiang B, et al. A novel vacuolar membrane H+-ATPase c subunit gene(ThVHAc1)from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J]. Mol Biol Rep, 2011, 38(2): 957-963.
doi: 10.1007/s11033-010-0189-9 URL |
[81] |
Baisakh N, RamanaRao MV, Rajasekaran K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora Löisel[J]. Plant Biotechnol J, 2012, 10(4): 453-464.
doi: 10.1111/j.1467-7652.2012.00678.x URL |
[82] | Khedr AHA, Serag MS, Nemat-Alla MM, et al. A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues[J]. Plant Cell Tissue Organ Cult PCTOC, 2011, 106(2): 191-206. |
[83] |
Khedr AHA, Serag MS, Nemat-Alla MM, et al. Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L[J]. Acta Physiol Plant, 2011, 33(5): 1769-1784.
doi: 10.1007/s11738-011-0714-z URL |
[84] |
Tan WK, Lin QS, Lim TM, et al. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing Saline environment[J]. Plant Cell Environ, 2013, 36(8): 1410-1422.
doi: 10.1111/pce.12068 URL |
[85] | 代金玲, 锡林呼, 张胜利, 等. 沙枣耐盐性研究进展[J]. 世界林业研究, 2019, 32(2): 19-23. |
Dai JL, Xi LH, Zhang SL, et al. Research progress on salt tolerance of Elaeagnus angustifolia[J]. World For Res, 2019, 32(2): 19-23. | |
[86] |
Naidoo G. Salt tolerance of the African haplotype of Phragmites australis(Poaceae)[J]. Afr J Ecol, 2021, 59(3): 724-734.
doi: 10.1111/aje.12876 URL |
[87] | 刘志华, 李建明. 盐生植物的形态解剖结构特征[J]. 衡水学院学报, 2006, 8(1): 86-88. |
Liu ZH, Li JM. The anatomy structure characteristics of halophytes[J]. J Hengshui Univ, 2006, 8(1): 86-88. | |
[88] | 杨海莉. 小花碱茅对渗透胁迫与等渗透势盐胁迫的生理响应[D]. 兰州: 兰州大学, 2019. |
Yang HL. Physiological response of Puccinellia tenuiflora to osmotic and isotonic salt stress[D]. Lanzhou: Lanzhou University, 2019. | |
[89] |
Al Hassan M, Gohari G, Boscaiu M, et al. Anatomical modifications in two juncus species under salt stress conditions[J]. Not Bot Horti Agrobo, 2015, 43(2): 501-506.
doi: 10.15835/nbha43210108 URL |
[90] | 李贵玲. 盐生植物耐盐机制概要及其在改良土壤中的作用[J]. 生物学通报, 2020, 55(9): 7-10. |
Li GL. Research on the anti-salt mechanism and the application of the halophytes[J]. Bull Biol, 2020, 55(9): 7-10. | |
[91] | 陈琳, 张俪文, 刘子亭, 等. 黄河三角洲河滩与潮滩芦苇对盐胁迫的生理生态响应[J]. 生态学报, 2020, 40(6): 2090-2098. |
Chen L, Zhang LW, Liu ZT, et al. Physiological and ecological responses of hetan and chaotan Phragmites australis to salt stress[J]. Acta Ecol Sin, 2020, 40(6): 2090-2098. | |
[92] | 彭彦辉. 膜通道蛋白与植物对渗透胁迫的响应[D]. 上海: 中国科学院研究生院(上海生命科学研究院), 2005. |
Peng YH. Plasma membrane channels and responses to osmotic stress in plant[D]. Shanghai: Graduate School of Chinese Academy of Sciences(Shanghai Institutes for Biological Sciences), 2005. | |
[93] |
Wang CM, Zhang JL, Liu XS, et al. Puccinellia tenuiflora maintains a low Na+ level under Sal Inity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant Cell Environ, 2009, 32(5): 486-496.
doi: 10.1111/j.1365-3040.2009.01942.x URL |
[94] |
Abideen Z, Koyro HW, Huchzermeyer B, et al. Moderate Sal Inity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation[J]. Environ Exp Bot, 2014, 105:70-76.
doi: 10.1016/j.envexpbot.2014.04.009 URL |
[95] | 王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17): 4609-4616. |
Wang SF, Hu YX, Li ZL, et al. Effects of NaCl stress on growth and mineral ion uptake, transportation and distribution of Quercus virginiana[J]. Acta Ecol Sin, 2010, 30(17): 4609-4616. | |
[96] | Liu ZX, Zhu JF, Yang XY, et al. Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress[J]. PLoS One, 2018, 13(1): e0191552. |
[97] |
Pérez-Jiménez M, Pérez-Tornero O. Mutants of Citrus macrophylla rootstock obtained by gamma radiation improve salt resistance through toxic ion exclusion[J]. Plant Physiol Biochem, 2020, 155:494-501.
doi: 10.1016/j.plaphy.2020.06.024 URL |
[98] | Zhang WD, Wang P, Bao Z, et al. SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora[J]. Front Plant Sci, 2017, 8:576. |
[99] | 李静. 小花碱茅响应土壤有益细菌和不同K+、Na+生境的生理研究[D]. 兰州: 兰州大学, 2015. |
Li J. Physiological responses of Puccinellia tenuiflora to beneficial soil bacteria and various K+ and Na+ conditions[D]. Lanzhou: Lanzhou University, 2015. | |
[100] |
杨升, 张华新, 陈秋夏, 等. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4): 489-496.
doi: 10.17521/cjpe.2016.0091 |
Yang S, Zhang HX, Chen QX, et al. Responses of apical ion fluxes to NaCl stress in Elaeagnus angustifolia seedlings[J]. Chin J Plant Ecol, 2017, 41(4): 489-496.
doi: 10.17521/cjpe.2016.0091 URL |
|
[101] |
Porat R, Pavoncello D, Ben-Hayyim G, et al. A heat treatment induced the expression of a Na+/H+ antiport gene(cNHX1)in Citrus fruit[J]. Plant Sci, 2002, 162(6): 957-963.
doi: 10.1016/S0168-9452(02)00041-9 URL |
[102] | Taiz L, Zeiger E. Plant Physiology(Fifth Edition)[M]. New York: Oxford University Press. 2010. |
[103] |
Li JR, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants[J]. J Cell Biochem, 2019, 120(7): 10914-10920.
doi: 10.1002/jcb.28474 URL |
[104] | Fan CX. Genetic mechanisms of salt stress responses in halophytes[J]. Plant Signal Behav, 2020, 15(1): 1704528. |
[105] | 张小萌, 刘宇麒, 张海龙, 等. 囊泡运输参与植物盐胁迫应答调控[J]. 植物生理学报, 2020, 56(5): 905-912. |
Zhang XM, Liu YQ, Zhang HL, et al. Vesicle trafficking is involved in regulation of plant Sal Inity stress response[J]. Plant Physiol J, 2020, 56(5): 905-912. |
[1] | QIN Yuan, PAN Xue-yu, YUAN Zhi-lin. PCR-based Method for the Rapid Detection of ACC Deaminase-producing Rhizosphere Bacteria [J]. Biotechnology Bulletin, 2017, 33(11): 112-122. |
[2] | Fu Chang, Sun Yugang, Fu Guirong. Advances of Salt Tolerance Mechanism in Hylophyate Plants [J]. Biotechnology Bulletin, 2013, 0(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||