Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 130-141.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1371
Previous Articles Next Articles
ZENG Hong1(), ZENG Rui-lin1, FU Wei1, JI Wen-hui1, LAN Dao-liang2,3()
Received:
2022-11-07
Online:
2023-05-26
Published:
2023-06-08
Contact:
LAN Dao-liang
E-mail:zenghong3000@163.com;landaoliang@163.com
ZENG Hong, ZENG Rui-lin, FU Wei, JI Wen-hui, LAN Dao-liang. Research Progress in the Application and Establishment of Bovine Induced Pluripotent Stem Cells[J]. Biotechnology Bulletin, 2023, 39(5): 130-141.
非整合型方法 Approach of non-integrating | 优点 Pros | 缺点 Cons |
---|---|---|
腺病毒 | 基因组整合频率低,载体容量大 | 重编程效率低,具有免疫原性,对某些细胞需多次感染 |
仙台病毒 | 无基因组整合,载体容量大,转染效率高,稳定转染, 重编程效率高 | 多个转录因子需多个病毒携带,具有免疫原性,需传代10次以上才可完全清除病毒基因组,只能加工RNA |
质粒转染 | 基因组整合频率低,操作简单,免疫原性低,无病毒组分 | 不能自我复制,重编程效率极低,需要多次转染 |
转座子 | 不涉及病毒,可精确切除,只需一次转染,载体容量大,免疫原性低 | 可能导致突变和染色体重排,重编程效率低,需要用转座酶进行切除 |
微环DNA载体 | 基因组整合频率低,操作简单,转染效率高,免疫原性极低 | 不能自我复制,需多次转染,重编程效率极低 |
小分子化合物 | 具有瞬时控制能力,易操作,能促进iPSCs的生成 | 对毒性效率存在争议,确定或非特异的效果具有不确定性或非特异性 |
Table 1 Pros and cons of partial non-integrating gene delivery approaches
非整合型方法 Approach of non-integrating | 优点 Pros | 缺点 Cons |
---|---|---|
腺病毒 | 基因组整合频率低,载体容量大 | 重编程效率低,具有免疫原性,对某些细胞需多次感染 |
仙台病毒 | 无基因组整合,载体容量大,转染效率高,稳定转染, 重编程效率高 | 多个转录因子需多个病毒携带,具有免疫原性,需传代10次以上才可完全清除病毒基因组,只能加工RNA |
质粒转染 | 基因组整合频率低,操作简单,免疫原性低,无病毒组分 | 不能自我复制,重编程效率极低,需要多次转染 |
转座子 | 不涉及病毒,可精确切除,只需一次转染,载体容量大,免疫原性低 | 可能导致突变和染色体重排,重编程效率低,需要用转座酶进行切除 |
微环DNA载体 | 基因组整合频率低,操作简单,转染效率高,免疫原性极低 | 不能自我复制,需多次转染,重编程效率极低 |
小分子化合物 | 具有瞬时控制能力,易操作,能促进iPSCs的生成 | 对毒性效率存在争议,确定或非特异的效果具有不确定性或非特异性 |
组别 Group | Naïve状态 Naïve state | Primed状态 Primed state |
---|---|---|
培养条件 | LIF/血清或2i | Activin A/bFGF或CHIR/IWR1 |
FGF2依赖性 | 不依赖 | 依赖 |
LIF依赖性 | 依赖 | 不依赖 |
BMP4依赖性 | 依赖 | 不依赖 |
Wnt激活 | 自我更新 | 分化 |
克隆形态 | 隆起 | 扁平 |
XX失活情况 | XaXa | XaXi |
Nanog表达 | 高 | 低 |
Fgf5表达 | 低 | 高 |
OCT4增强子 | 远端 | 近端 |
H3K24me3表达 | 低 | 高 |
嵌合小鼠胚胎 | 能 | 不能 |
Table 2 A comparison of naïve and primed state pluripotence
组别 Group | Naïve状态 Naïve state | Primed状态 Primed state |
---|---|---|
培养条件 | LIF/血清或2i | Activin A/bFGF或CHIR/IWR1 |
FGF2依赖性 | 不依赖 | 依赖 |
LIF依赖性 | 依赖 | 不依赖 |
BMP4依赖性 | 依赖 | 不依赖 |
Wnt激活 | 自我更新 | 分化 |
克隆形态 | 隆起 | 扁平 |
XX失活情况 | XaXa | XaXi |
Nanog表达 | 高 | 低 |
Fgf5表达 | 低 | 高 |
OCT4增强子 | 远端 | 近端 |
H3K24me3表达 | 低 | 高 |
嵌合小鼠胚胎 | 能 | 不能 |
培养基 Medium | 主要添加成分 Main component | 参考文献 Reference |
---|---|---|
CTRF | TeSR1培养基(无FGF2和TGFb)、FGF2和IWR1 | [ |
LCDM | hLIF、CHIR99021、(S)-(+)-dimethindene maleate、minocycline hydrochloride | [ |
TiF培养基 | mTeSR plus培养基、PD0325901、CHIR-99021、hLIF、IWR1、iDOT1L、Forskolin | [ |
bEPSC培养基 | mTeSR1培养基、CHIR99021、WH-4-023、XAV939、IWR-1、维生素C、LIF、Activin A | [ |
Table 3 Part of the medium used to obtain bovine pluripotent stem cells
培养基 Medium | 主要添加成分 Main component | 参考文献 Reference |
---|---|---|
CTRF | TeSR1培养基(无FGF2和TGFb)、FGF2和IWR1 | [ |
LCDM | hLIF、CHIR99021、(S)-(+)-dimethindene maleate、minocycline hydrochloride | [ |
TiF培养基 | mTeSR plus培养基、PD0325901、CHIR-99021、hLIF、IWR1、iDOT1L、Forskolin | [ |
bEPSC培养基 | mTeSR1培养基、CHIR99021、WH-4-023、XAV939、IWR-1、维生素C、LIF、Activin A | [ |
[1] | 邱佳慧, 谭季春. 胚胎干细胞与遗传病模型的构建[J]. 中国组织工程研究, 2018, 22(17): 2769-2774. |
Qiu JH, Tan JC. Embryonic stem cells and construction of a genetic disease model[J]. Chin J Tissue Eng Res, 2018, 22(17): 2769-2774. | |
[2] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174 |
[3] |
Kim D, Roh S. Strategy to establish embryo-derived pluripotent stem cells in cattle[J]. Int J Mol Sci, 2021, 22(9): 5011.
doi: 10.3390/ijms22095011 URL |
[4] |
Bogliotti YS, Wu J, Vilarino M, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J]. Proc Natl Acad Sci USA, 2018, 115(9): 2090-2095.
doi: 10.1073/pnas.1716161115 pmid: 29440377 |
[5] |
Talluri TR, Kumar D, Glage S, et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming[J]. Cell Reprogram, 2015, 17(2): 131-140.
doi: 10.1089/cell.2014.0080 pmid: 25826726 |
[6] |
Kawaguchi T, Tsukiyama T, Kimura K, et al. Generation of Naïve bovine induced pluripotent stem cells using PiggyBac transposition of doxycycline-inducible transcription factors[J]. PLoS One, 2015, 10(8): e0135403.
doi: 10.1371/journal.pone.0135403 URL |
[7] |
Zhao LX, Wang ZX, Zhang JD, et al. Characterization of the single-cell derived bovine induced pluripotent stem cells[J]. Tissue Cell, 2017, 49(5): 521-527.
doi: S0040-8166(17)30023-X pmid: 28720304 |
[8] |
Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, et al. Generation of induced pluripotent stem cells from large domestic animals[J]. Stem Cell Res Ther, 2020, 11(1): 247.
doi: 10.1186/s13287-020-01716-5 pmid: 32586372 |
[9] |
Pillai VV, Kei TG, Reddy SE, et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance[J]. Anim Sci J, 2019, 90(9): 1149-1160.
doi: 10.1111/asj.13272 pmid: 31322312 |
[10] |
Tashiro K, Inamura M, Kawabata K, et al. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction[J]. Stem Cells, 2009, 27(8): 1802-1811.
doi: 10.1002/stem.108 pmid: 19544436 |
[11] | Choi IY, Lim H, Lee G. Efficient generation human induced pluripotent stem cells from human somatic cells with Sendai-virus[J]. J Vis Exp, 2014(86): 51406. |
[12] |
Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6): 472-476.
doi: 10.1016/j.stem.2009.05.005 pmid: 19481515 |
[13] |
Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7(5): 618-630.
doi: 10.1016/j.stem.2010.08.012 pmid: 20888316 |
[14] |
Desponts C, Ding S. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells[J]. Methods Mol Biol, 2010, 636: 207-218.
doi: 10.1007/978-1-60761-691-7_13 pmid: 20336525 |
[15] |
Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells[J]. Gene, 2019, 686: 146-159.
doi: S0378-1119(18)31212-5 pmid: 30472380 |
[16] |
Sumer H, Liu J, Malaver-Ortega LF, et al. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J]. J Anim Sci, 2011, 89(9): 2708-2716.
doi: 10.2527/jas.2010-3666 pmid: 21478453 |
[17] |
Cao HG, Yang P, Pu Y, et al. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins[J]. Int J Biol Sci, 2012, 8(4): 498-511.
doi: 10.7150/ijbs.3723 pmid: 22457605 |
[18] |
Deng YF, Liu QY, Luo C, et al. Generation of induced pluripotent stem cells from buffalo(Bubalus bubalis)fetal fibroblasts with buffalo defined factors[J]. Stem Cells Dev, 2012, 21(13): 2485-2494.
doi: 10.1089/scd.2012.0018 URL |
[19] |
Zhao LX, Gao XF, Zheng YX, et al. Establishment of bovine expanded potential stem cells[J]. Proc Natl Acad Sci USA, 2021, 118(15): e2018505118.
doi: 10.1073/pnas.2018505118 URL |
[20] |
Li LJ, Sun L, Gao FR, et al. Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation[J]. Proc Natl Acad Sci USA, 2010, 107(4): 1402-1407.
doi: 10.1073/pnas.0905657107 pmid: 20080709 |
[21] |
Zeineddine D, Papadimou E, Chebli K, et al. Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development[J]. Dev Cell, 2006, 11(4): 535-546.
pmid: 17011492 |
[22] |
Chew JL, Loh YH, Zhang WS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells[J]. Mol Cell Biol, 2005, 25(14): 6031-6046.
doi: 10.1128/MCB.25.14.6031-6046.2005 URL |
[23] |
Nakagawa M, Takizawa N, Narita M, et al. Promotion of direct reprogramming by transformation-deficient Myc[J]. Proc Natl Acad Sci USA, 2010, 107(32): 14152-14157.
doi: 10.1073/pnas.1009374107 pmid: 20660764 |
[24] |
Pessôa LVF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal Kingdom: availability and applications[J]. World J Stem Cells, 2019, 11(8): 491-505.
doi: 10.4252/wjsc.v11.i8.491 pmid: 31523369 |
[25] |
Kinoshita M, Barber M, Mansfield W, et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28(3): 453-471.e8.
doi: 10.1016/j.stem.2020.11.005 URL |
[26] |
Han XP, Han JY, Ding FR, et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Res, 2011, 21(10): 1509-1512.
doi: 10.1038/cr.2011.125 pmid: 21826109 |
[27] | 才文道力玛, 伊敏娜, 王希生, 等. 大动物多能干细胞建立研究进展[J]. 中国实验动物学报, 2020, 28(5): 695-701. |
Caiwendaolima, Yiminna, Wang XS, et al. Research progress on the establishment of pluripotent stem cells in large animals[J]. Acta Lab Animalis Sci Sin, 2020, 28(5): 695-701. | |
[28] |
Wang B, Wu LL, Li DW, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-nanog-essrb-Sall4[J]. Cell Rep, 2019, 27(12): 3473-3485.e5.
doi: S2211-1247(19)30697-7 pmid: 31216469 |
[29] |
Pillai VV, Koganti PP, Kei TG, et al. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells[J]. Biol Open, 2021, 10(10): bio058756.
doi: 10.1242/bio.058756 URL |
[30] |
Canizo JR, Vazquez Echegaray C, Klisch D, et al. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system[J]. BMC Res Notes, 2018, 11(1): 509.
doi: 10.1186/s13104-018-3627-8 pmid: 30053877 |
[31] |
Wang SW, Wu DC, et al. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters[J]. Cell Death Dis, 2013, 4(11): e907.
doi: 10.1038/cddis.2013.420 |
[32] |
Cravero D, Martignani E, Miretti S, et al. Generation of induced pluripotent stem cells from bovine epithelial cells and partial redirection toward a mammary phenotype in vitro[J]. Cell Reprogram, 2015, 17(3): 211-220.
doi: 10.1089/cell.2014.0087 pmid: 26053520 |
[33] |
Bai CY, Li XC, Gao YH, et al. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells[J]. J Pineal Res, 2016, 61(2): 154-167.
doi: 10.1111/jpi.12334 pmid: 27090494 |
[34] |
Polo JM, Liu S, Figueroa ME, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells[J]. Nat Biotechnol, 2010, 28(8): 848-855.
doi: 10.1038/nbt.1667 pmid: 20644536 |
[35] |
Poetsch MS, Strano A, Guan KM. Human induced pluripotent stem cells: from cell origin, genomic stability, and epigenetic memory to translational medicine[J]. Stem Cells, 2022, 40(6): 546-555.
doi: 10.1093/stmcls/sxac020 URL |
[36] |
Scesa G, Adami R, Bottai D. iPSC preparation and epigenetic memory: does the tissue origin matter?[J]. Cells, 2021, 10(6): 1470.
doi: 10.3390/cells10061470 URL |
[37] | Recchia K, Pessôa LVF, Pieri NCG, et al. Recchia K, Pessôa LVF, Pieri NCG, et al.. Influence of cell type in in vitro induced reprogramming in cattle[J]. Life(Basel), 2022, 12(8): 1139. |
[38] |
Hou PP, Li YQ, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146): 651-654.
doi: 10.1126/science.1239278 pmid: 23868920 |
[39] |
Ho R, Papp B, Hoffman JA, et al. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins[J]. Cell Rep, 2013, 3(6): 2113-2126.
doi: 10.1016/j.celrep.2013.05.015 pmid: 23791530 |
[40] |
Ring DB, Johnson KW, Henriksen EJ, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo[J]. Diabetes, 2003, 52(3): 588-595.
doi: 10.2337/diabetes.52.3.588 URL |
[41] |
Mao J, Zhang Q, Deng W, et al. Epigenetic modifiers facilitate induction and pluripotency of Porcine iPSCs[J]. Stem Cell Rep, 2017, 8(1): 11-20.
doi: 10.1016/j.stemcr.2016.11.013 URL |
[42] |
Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming[J]. Nature, 2012, 483(7391): 598-602.
doi: 10.1038/nature10953 |
[43] |
Chen JK, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs[J]. Nat Genet, 2013, 45(1): 34-42.
doi: 10.1038/ng.2491 pmid: 23202127 |
[44] |
Su Y, Wang L, Fan ZQ, et al. Establishment of bovine-induced pluripotent stem cells[J]. Int J Mol Sci, 2021, 22(19): 10489.
doi: 10.3390/ijms221910489 URL |
[45] |
Huangfu DW, Maehr R, Guo WJ, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nat Biotechnol, 2008, 26(7): 795-797.
doi: 10.1038/nbt1418 pmid: 18568017 |
[46] |
Mahapatra PS, Singh R, Kumar K, et al. Valproic acid assisted reprogramming of fibroblasts for generation of pluripotent stem cells in buffalo(Bubalus bubalis)[J]. Int J Dev Biol, 2017, 61(1-2): 81-88.
doi: 10.1387/ijdb.160006sb URL |
[47] |
Kuo HH, Gao XZ, DeKeyser JM, et al. Negligible-cost and weekend-free chemically defined human iPSC culture[J]. Stem Cell Reports, 2020, 14(2): 256-270.
doi: 10.1016/j.stemcr.2019.12.007 URL |
[48] |
Miura T, Yuasa N, Ota H, et al. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions[J]. Biochem Biophys Res Commun, 2019, 518(3): 506-512.
doi: 10.1016/j.bbrc.2019.08.082 URL |
[49] |
Saunders A, Faiola F, Wang JL. Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog[J]. Stem Cells, 2013, 31(7): 1227-1236.
doi: 10.1002/stem.1384 pmid: 23653415 |
[50] |
Paynter JM, Chen J, Liu XD, et al. Propagation and maintenance of mouse embryonic stem cells[J]. Methods Mol Biol, 2019, 1940: 33-45.
doi: 10.1007/978-1-4939-9086-3_3 pmid: 30788816 |
[51] |
Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504(7479): 282-286.
doi: 10.1038/nature12745 |
[52] |
Heo YT, Quan XY, Xu YN, et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells[J]. Stem Cells Dev, 2015, 24(3): 393-402.
doi: 10.1089/scd.2014.0278 pmid: 25209165 |
[53] |
Botigelli RC, Pieri NCG, Bessi BW, et al. Acquisition and maintenance of pluripotency are influenced by fibroblast growth factor, leukemia inhibitory factor, and 2i in bovine-induced pluripotent stem cells[J]. Front Cell Dev Biol, 2022, 10: 938709.
doi: 10.3389/fcell.2022.938709 URL |
[54] |
Weinberger L, Ayyash M, Novershtern N, et al. Dynamic stem cell states: naive to primed pluripotency in rodents and humans[J]. Nat Rev Mol Cell Biol, 2016, 17(3): 155-169.
doi: 10.1038/nrm.2015.28 |
[55] |
Hassani SN, Totonchi M, Gourabi H, et al. Signaling roadmap modulating naive and primed pluripotency[J]. Stem Cells Dev, 2014, 23(3): 193-208.
doi: 10.1089/scd.2013.0368 URL |
[56] | 王肖肖, 柴小青, 叶守东. 人胚胎干细胞Naïve多能性状态建立的研究进展[J]. 生命的化学, 2017, 37(2): 187-192. |
Wang XX, Chai XQ, Ye SD. Research progress of the establishment of Naïve pluripotent state of human embryonic stem cells[J]. Chem Life, 2017, 37(2): 187-192. | |
[57] |
Nichols J, Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4(6): 487-492.
doi: 10.1016/j.stem.2009.05.015 pmid: 19497275 |
[58] |
Heard E. Recent advances in X-chromosome inactivation[J]. Curr Opin Cell Biol, 2004, 16(3): 247-255.
pmid: 15145348 |
[59] |
Smith A. Formative pluripotency: the executive phase in a developmental continuum[J]. Development, 2017, 144(3): 365-373.
doi: 10.1242/dev.142679 pmid: 28143843 |
[60] |
Xiang JZ, Wang HN, Zhang YY, et al. LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine-mouse chimeras from iPSCs and bovine fetal fibroblasts[J]. FEBS J, 2021, 288(14): 4394-4411.
doi: 10.1111/febs.15744 pmid: 33524211 |
[61] |
Soto DA, Navarro M, Zheng CB, et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells[J]. Sci Rep, 2021, 11(1): 11045.
doi: 10.1038/s41598-021-90422-0 pmid: 34040070 |
[62] |
Liu K, Wang F, Ye XY, et al. KSR-based medium improves the generation of high-quality mouse iPS cells[J]. PLoS One, 2014, 9(8): e105309.
doi: 10.1371/journal.pone.0105309 URL |
[63] |
Okada M, Oka M, Yoneda Y. Effective culture conditions for the induction of pluripotent stem cells[J]. Biochim Biophys Acta, 2010, 1800(9): 956-963.
doi: 10.1016/j.bbagen.2010.04.004 pmid: 20417254 |
[64] |
Rawat N, Singh MK, Sharma T, et al. Media switching at different time periods affects the reprogramming efficiency of buffalo fetal fibroblasts[J]. Anim Biotechnol, 2021, 32(2): 155-168.
doi: 10.1080/10495398.2019.1671435 URL |
[65] |
Yoshida Y, Takahashi K, Okita K, et al. Hypoxia enhances the generation of induced pluripotent stem cells[J]. Cell Stem Cell, 2009, 5(3): 237-241.
doi: 10.1016/j.stem.2009.08.001 pmid: 19716359 |
[66] |
Bessi BW, Botigelli RC, Pieri NCG, et al. Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation[J]. Cells, 2021, 10(6): 1531.
doi: 10.3390/cells10061531 URL |
[67] |
Lim JWE, Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells[J]. Proteomics, 2002, 2(9): 1187-1203.
pmid: 12362336 |
[68] |
Cong S, Cao GF, Liu DJ. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro[J]. Cytotechnology, 2014, 66(6): 995-1005.
doi: 10.1007/s10616-013-9653-4 URL |
[69] |
Xu WQ, Hao RF, Wang J, et al. Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells[J]. Sci Rep, 2022, 12(1): 9177.
doi: 10.1038/s41598-022-13249-3 pmid: 35654935 |
[70] |
Xu W, Hao R, Wang J, et al. Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells[J]. Sci Rep, 2022, 12(1): 9177.
doi: 10.1038/s41598-022-13249-3 pmid: 35654935 |
[71] |
Souralova T, Holubcova Z, Kyjovska D, et al. Xeno- and feeder-free derivation of two sex-discordant sibling lines of human embryonic stem cells[J]. Stem Cell Res, 2021, 57: 102574.
doi: 10.1016/j.scr.2021.102574 URL |
[72] |
Seo JH, Jeon YJ. Global proteomic analysis of mesenchymal stem cells derived from human embryonic stem cells via connective tissue growth factor treatment under chemically defined feeder-free culture conditions[J]. J Microbiol Biotechnol, 2022, 32(1): 126-140.
doi: 10.4014/jmb.2110.10032 URL |
[73] |
Guo R, Ye X, Yang J, et al. Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells[J]. Nat Commun, 2018, 9(1): 2620.
doi: 10.1038/s41467-018-05038-2 pmid: 29976922 |
[74] |
Soto DA, Ross PJ. Pluripotent stem cells and livestock genetic engineering[J]. Transgenic Res, 2016, 25(3): 289-306.
doi: 10.1007/s11248-016-9929-5 pmid: 26894405 |
[75] |
Kumar D, Talluri TR, Selokar NL, et al. Perspectives of pluripotent stem cells in livestock[J]. World J Stem Cells, 2021, 13(1): 1-29.
doi: 10.4252/wjsc.v13.i1.1 pmid: 33584977 |
[76] |
Selvaraj V, Wildt DE, Pukazhenthi BS. Induced pluripotent stem cells for conserving endangered species?[J]. Nat Methods, 2011, 8(10): 805-807.
doi: 10.1038/nmeth.1715 pmid: 21959133 |
[77] |
Comizzoli P, Holt WV. Recent advances and prospects in germplasm preservation of rare and endangered species[J]. Adv Exp Med Biol, 2014, 753: 331-356.
doi: 10.1007/978-1-4939-0820-2_14 pmid: 25091916 |
[78] |
Hildebrandt TB, Hermes R, Colleoni S, et al. Embryos and embryonic stem cells from the white rhinoceros[J]. Nat Commun, 2018, 9(1): 2589.
doi: 10.1038/s41467-018-04959-2 pmid: 29973581 |
[79] |
Plews JR, Gu MX, Longaker MT, et al. Large animal induced pluripotent stem cells as pre-clinical models for studying human disease[J]. J Cell Mol Med, 2012, 16(6): 1196-1202.
doi: 10.1111/j.1582-4934.2012.01521.x pmid: 22212700 |
[80] |
Bassols A, Costa C, Eckersall PD, et al. The pig as an animal model for human pathologies: a proteomics perspective[J]. Proteomics Clin Appl, 2014, 8(9-10): 715-731.
doi: 10.1002/prca.201300099 URL |
[81] |
Cong XQ, Zhang SM, Ellis MW, et al. Large animal models for the clinical application of human induced pluripotent stem cells[J]. Stem Cells Dev, 2019, 28(19): 1288-1298.
doi: 10.1089/scd.2019.0136 pmid: 31359827 |
[82] |
Gün G, Kues WA. Current progress of genetically engineered pig models for biomedical research[J]. Biores Open Access, 2014, 3(6): 255-264.
doi: 10.1089/biores.2014.0039 pmid: 25469311 |
[83] |
Herath S, Dobson H, Bryant CE, et al. Use of the cow as a large animal model of uterine infection and immunity[J]. J Reprod Immunol, 2006, 69(1): 13-22.
doi: 10.1016/j.jri.2005.09.007 pmid: 16386311 |
[84] |
Yapura J, Mapletoft RJ, Pierson R, et al. A bovine model for examining the effects of an aromatase inhibitor on ovarian function in women[J]. Fertil Steril, 2011, 96(2): 434-438.e3.
doi: 10.1016/j.fertnstert.2011.05.038 pmid: 21696721 |
[85] |
Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells(iPSCs): social, legal, and ethical considerations[J]. Stem Cell Res Ther, 2019, 10(1): 341.
doi: 10.1186/s13287-019-1455-y |
[86] |
Post MJ. Cultured meat from stem cells: challenges and prospects[J]. Meat Sci, 2012, 92(3): 297-301.
doi: 10.1016/j.meatsci.2012.04.008 pmid: 22543115 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||