Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 61-72.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1166
Previous Articles Next Articles
LI Yuan-hong1(), GUO Yu-hao1, CAO Yan1, ZHU Zhen-zhou1, WANG Fei-fei1,2()
Received:
2022-09-21
Online:
2023-06-26
Published:
2023-07-07
Contact:
WANG Fei-fei
E-mail:lyhwhpu0807@163.com;twangff@whpu.edu.cn
LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone[J]. Biotechnology Bulletin, 2023, 39(6): 61-72.
Fig. 1 Feasible biosynthetic pathways of phytohormones in microalgae Schematic cartoon displays the indole-3-acetic acid, cytokinins, abscisic acid and gibberellins MEP-dependent possible biosynthetic pathways. Dashed arrows refer to pathways with multistep reaction. Question mark indicates undefined pathways. PEP: Phosphoenolpyruvate. IAA: Indole-3-acetic acid. IAM: Indoleacetalamine. IAAld: Indol-eacetaldehyde. IPyA: Indole-3-pyruvic acid. Trp: Tryptophan. G3P: Glyceraldehyde 3-phosphate. MEP: Methylery-thritol phosphate. DMAPP: Dimethylallyl pyrophosphate. IPP: Isopentenyl pyrophosphate. GGPP: Geranylgeranyl dip-hosphate. GA12ald: Gibberellin A12 aldehyde
植物激素 Phytohormone | 名称 Name | 剂量 Dosage | 微藻 Microalgae | 培养条件Culture condition | 结果 Results | 参考文献 Reference |
---|---|---|---|---|---|---|
生长素Auxins | IAA | 10-5 mol/L | 斜生栅藻Scenedesmus obliquus | BBM | 生物量增加了1.9倍 | [ |
IAA | 20 mg/ L | 栅藻Scenedesmus sp. SDEC-8 索罗金小球藻 Chlorella sorokiniana SDEC-18 | BG11 | SDEC-8和SDEC-18的生物量分别提高了59.3%和76.6% | [ | |
IBA | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂肪含量分别提高至(1.96±0.11)g/L和(34.88±3.87)% | [ | |
IAA | 5 mg/L | 海洋微拟球藻 Nanochloropsis oceanica | F/2 | 脂肪含量提高了149.4% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量增加了340%。脂质和蛋白质分别增加300%和351% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量较对照提高了329% | ||
细胞分裂素Cytokinin | BAP | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂质含量分别为(1.88±0.061)g/L和(31.84±1.33)%,提高了329% | [ |
Z | 0.1 mg/L | 绿藻Acutodesmus obliquus | BG11 | 生物量增加了60.7% | [ | |
赤霉素Gibberellin | GA3 | 10 μmol/L | 普通小球藻Chlorella vulgaris | F/2 | 细胞密度增加了142% | [ |
GA3 | 100 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量产量和TFA产率分别提高了3.3倍和3.9倍,EPA产率提高了3.2倍 | [ | |
脱落酸Abscisic acid | ABA | 1.0 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照的1.8倍 | [ |
ABA | 10 mg/L | 小球藻Chlorella sp. | BG11 | 脂质含量为30.31%,而对照组脂质含量仅为21.23% | [ | |
水杨酸Salicylic acid | SA | 10 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照组的1.6倍 | [ |
茉莉酸Jasmonic acid | MeJA | 1 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量累积至2.7倍 | [ |
JA | 0.5 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量是对照组的两倍 | [ | |
油菜素甾醇Brassinosteroid | EBL | 1 μmol/L | 绿藻Acutodesmus obliquus | BBM | 与对照组相比,细胞数量增加了99%;蛋白质水平上升了148% | [ |
褪黑素Melatonin | MT | 10 μmol/L | 单壳缝藻Monoraphidium sp. | BG11 | 脂质含量增加1.44倍 | [ |
其他植物激素 Other phytohormone | 2,4-D | 1 mg/L | 蛋白核小球藻Chlorella pyrenoidosa | 城市污水 摇瓶培养 | 微藻生物量和脂质产量的增加最为明显,分别为(0.86±0.04)和(0.46±0.02)g/L,较之分别增加了89.7%和76.5% | [ |
室外培养 | 使用高度为 0.50 m、直径为 0.06 m 的玻璃柱生物反应器 其最大生物量为(1.203±0.056)g/L,比对照组高80% |
Table 1 Phytohormones regulating the accumulation of microalgae biomass and energy storage substances
植物激素 Phytohormone | 名称 Name | 剂量 Dosage | 微藻 Microalgae | 培养条件Culture condition | 结果 Results | 参考文献 Reference |
---|---|---|---|---|---|---|
生长素Auxins | IAA | 10-5 mol/L | 斜生栅藻Scenedesmus obliquus | BBM | 生物量增加了1.9倍 | [ |
IAA | 20 mg/ L | 栅藻Scenedesmus sp. SDEC-8 索罗金小球藻 Chlorella sorokiniana SDEC-18 | BG11 | SDEC-8和SDEC-18的生物量分别提高了59.3%和76.6% | [ | |
IBA | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂肪含量分别提高至(1.96±0.11)g/L和(34.88±3.87)% | [ | |
IAA | 5 mg/L | 海洋微拟球藻 Nanochloropsis oceanica | F/2 | 脂肪含量提高了149.4% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量增加了340%。脂质和蛋白质分别增加300%和351% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量较对照提高了329% | ||
细胞分裂素Cytokinin | BAP | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂质含量分别为(1.88±0.061)g/L和(31.84±1.33)%,提高了329% | [ |
Z | 0.1 mg/L | 绿藻Acutodesmus obliquus | BG11 | 生物量增加了60.7% | [ | |
赤霉素Gibberellin | GA3 | 10 μmol/L | 普通小球藻Chlorella vulgaris | F/2 | 细胞密度增加了142% | [ |
GA3 | 100 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量产量和TFA产率分别提高了3.3倍和3.9倍,EPA产率提高了3.2倍 | [ | |
脱落酸Abscisic acid | ABA | 1.0 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照的1.8倍 | [ |
ABA | 10 mg/L | 小球藻Chlorella sp. | BG11 | 脂质含量为30.31%,而对照组脂质含量仅为21.23% | [ | |
水杨酸Salicylic acid | SA | 10 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照组的1.6倍 | [ |
茉莉酸Jasmonic acid | MeJA | 1 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量累积至2.7倍 | [ |
JA | 0.5 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量是对照组的两倍 | [ | |
油菜素甾醇Brassinosteroid | EBL | 1 μmol/L | 绿藻Acutodesmus obliquus | BBM | 与对照组相比,细胞数量增加了99%;蛋白质水平上升了148% | [ |
褪黑素Melatonin | MT | 10 μmol/L | 单壳缝藻Monoraphidium sp. | BG11 | 脂质含量增加1.44倍 | [ |
其他植物激素 Other phytohormone | 2,4-D | 1 mg/L | 蛋白核小球藻Chlorella pyrenoidosa | 城市污水 摇瓶培养 | 微藻生物量和脂质产量的增加最为明显,分别为(0.86±0.04)和(0.46±0.02)g/L,较之分别增加了89.7%和76.5% | [ |
室外培养 | 使用高度为 0.50 m、直径为 0.06 m 的玻璃柱生物反应器 其最大生物量为(1.203±0.056)g/L,比对照组高80% |
[1] | Hoang AT, Sirohi R, Pandey A, et al. Biofuel production from microalgae: challenges and chances[J]. Phytochem Rev, 2022: 1-38. |
[2] |
Rizwan M, Mujtaba G, Memon SA, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review[J]. Renew Sustain Energy Rev, 2018, 92: 394-404.
doi: 10.1016/j.rser.2018.04.034 URL |
[3] |
Lu YD, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?[J]. Trends Plant Sci, 2015, 20(5): 273-282.
doi: S1360-1385(15)00007-2 pmid: 25697753 |
[4] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[5] |
Woodward AW, Bartel B. Auxin: regulation, action, and interaction[J]. Ann Bot, 2005, 95(5): 707-735.
doi: 10.1093/aob/mci083 URL |
[6] |
Stirk WA, Ördög V, Novák O, et al. Auxin and cytokinin relationships in 24 microalgal strains(1)[J]. J Phycol, 2013, 49(3): 459-467.
doi: 10.1111/jpy.12061 pmid: 27007035 |
[7] |
Romanenko EA, Kosakovskaya IV, Romanenko PA. Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt I. auxins, abscisic acid, ethylene[J]. Inter J Algae, 2015, 17(3): 275-289.
doi: 10.1615/InterJAlgae.v17.i3 URL |
[8] |
Chang WJ, Li YP, Qu YH, et al. Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA[J]. Renew Energy, 2022, 187: 819-828.
doi: 10.1016/j.renene.2022.01.108 URL |
[9] |
Stirk WA, van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications[J]. Biotechnol Adv, 2020, 44: 107612.
doi: 10.1016/j.biotechadv.2020.107612 URL |
[10] |
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation[J]. Annu Rev Plant Biol, 2006, 57: 431-449.
pmid: 16669769 |
[11] |
Nayar S. Exploring the role of a cytokinin-activating enzyme LONELY GUY in unicellular microalga Chlorella variabilis[J]. Front Plant Sci, 2021, 11: 611871.
doi: 10.3389/fpls.2020.611871 URL |
[12] |
Stirk WA, Bálint P, Tarkowská D, et al. Hormone profiles in microalgae: gibberellins and brassinosteroids[J]. Plant Physiol Biochem, 2013, 70: 348-353.
doi: 10.1016/j.plaphy.2013.05.037 URL |
[13] |
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447 |
Gao XH, Fu XD. Research progress for the gibberellin signaling and action on plant growth and development[J]. Biotechnol Bull, 2018, 34(7): 1-13. | |
[14] |
Mansouri H, Ebrahim Nezhad S. Improvement in biochemical parameters and changes in lipid profile of Scenedesmus obliquus by plant growth regulators under mixotrophic condition[J]. Biomass Bioenergy, 2020, 140: 105708.
doi: 10.1016/j.biombioe.2020.105708 URL |
[15] | Kabaoğlu U, Aslan U, Ünal D. Effect of gibberellin on some fatty acid profiles under nitrogen starvation in green algae Chlorella vulgaris[J]. Int J Second Metab, 2021: 11-19. |
[16] |
Stirk WA, Bálint P, Tarkowská D, et al. Effect of light on growth and endogenous hormones in Chlorella minutissima(Trebouxiophyceae)[J]. Plant Physiol Biochem, 2014, 79: 66-76.
doi: 10.1016/j.plaphy.2014.03.005 URL |
[17] |
Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid: emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61: 651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[18] | Xu ZY, Yoo YJ, Hwang I. ABA conjugates and their physiological roles in plant cells[M]// Zhang DP. Abscisic acid:metabolism, transport and signaling, Dordrecht: Springer, 2014: 77-87. |
[19] |
Yoshida K, Igarashi E, Mukai M, et al. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid[J]. Plant Cell Environ, 2003, 26(3): 451-457.
doi: 10.1046/j.1365-3040.2003.00976.x URL |
[20] |
Pierik R, Tholen D, Poorter H, et al. The Janus face of ethylene: growth inhibition and stimulation[J]. Trends Plant Sci, 2006, 11(4): 176-183.
doi: 10.1016/j.tplants.2006.02.006 URL |
[21] |
Le Henry M, Charton M, Alignan M, et al. Ethylene stimulates growth and affects fatty acid content of Synechocystis sp. PCC 6803[J]. Algal Res, 2017, 26: 234-239.
doi: 10.1016/j.algal.2017.07.032 URL |
[22] |
Kim SH, Lim SR, Hong SJ, et al. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris[J]. J Agric Food Chem, 2016, 64(23): 4807-4816.
doi: 10.1021/acs.jafc.6b00541 URL |
[23] |
Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling[J]. J Plant Growth Regul, 2007, 26(3): 290-300.
doi: 10.1007/s00344-007-9017-4 URL |
[24] |
Caretto S, Linsalata V, Colella G, et al. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress[J]. Int J Mol Sci, 2015, 16(11): 26378-26394.
doi: 10.3390/ijms161125967 pmid: 26556338 |
[25] |
Oklestkova J, Rárová L, Kvasnica M, et al. Brassinosteroids: synthesis and biological activities[J]. Phytochem Rev, 2015, 14(6): 1053-1072.
doi: 10.1007/s11101-015-9446-9 URL |
[26] | Bajguz A. Brassinosteroids in microalgae: application for growth improvement and protection against abiotic stresses[M]// HayatS, YusufM, BhardwajR, et al. Brassinosteroids:Plant growth and development. Singapore: Springer, 2019: 45-58. |
[27] |
Stirk WA, Bálint P, Tarkowská D, et al. Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress[J]. Eur J Phycol, 2018, 53(3): 273-279.
doi: 10.1080/09670262.2018.1441447 URL |
[28] |
Lu YD, Jiang P, Liu SF, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes(bkts)in microalga Haematococcus pluvialis[J]. Bioresour Technol, 2010, 101(16): 6468-6474.
doi: 10.1016/j.biortech.2010.03.072 URL |
[29] |
Song XT, Zhao YT, Li T, et al. Enhancement of lipid accumulation in Monoraphidium sp. QLY-1 by induction of strigolactone[J]. Bioresour Technol, 2019, 288: 121607.
doi: 10.1016/j.biortech.2019.121607 URL |
[30] |
Song XT, Zhao YT, Han BY, et al. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions[J]. Bioresour Technol, 2020, 306: 123107.
doi: 10.1016/j.biortech.2020.123107 URL |
[31] |
Zhao YT, Wang HP, Yu CL, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresour Technol, 2021, 319: 124150.
doi: 10.1016/j.biortech.2020.124150 URL |
[32] |
Zhao YT, Li DF, Xu JW, et al. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J]. Bioresour Technol, 2018, 259: 46-53.
doi: 10.1016/j.biortech.2018.03.014 URL |
[33] |
Arumugam M, Udayan A, Sabapathy H, et al. Plant growth regulator triggered metabolomic profile leading to increased lipid accumulation in an edible marine microalga[J]. J Appl Phycol, 2021, 33(3): 1353-1365.
doi: 10.1007/s10811-021-02424-0 |
[34] |
Zhao YT, Song XT, Zhao P, et al. Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1[J]. Algal Res, 2021, 54: 102196.
doi: 10.1016/j.algal.2021.102196 URL |
[35] |
Guldhe A. Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production[J]. Algal Res, 2019, 40: 101518.
doi: 10.1016/j.algal.2019.101518 URL |
[36] |
Madani NSH, Shamsaie Mehrgan M, Hosseini Shekarabi SP, et al. Regulatory effect of gibberellic acid(GA3)on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana[J]. J Appl Phycol, 2021, 33(1): 255-262.
doi: 10.1007/s10811-020-02291-1 |
[37] |
da Silveira JT, da Rosa APC, Costa JAV. Modulating phytohormone supplementation can efficiently increase biomass and lipid production in Spirulina(Arthrospira)[J]. Bioenergy Res, 2022, 15(1): 112-120.
doi: 10.1007/s12155-021-10310-3 |
[38] |
Singh J, Jain D, Agarwal P, et al. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07[J]. Process Biochem, 2020, 95: 223-234.
doi: 10.1016/j.procbio.2020.02.012 URL |
[39] |
Gee DM, Archer L, Fleming GTA, et al. The effect of nutrient and phytohormone supplementation on the growth, pigment yields and biochemical composition of newly isolated microalgae[J]. Process Biochem, 2020, 92: 61-68.
doi: 10.1016/j.procbio.2020.03.001 URL |
[40] |
Han XF, Zeng HR, Bartocci P, et al. Phytohormones and effects on growth and metabolites of microalgae: a review[J]. Fermentation, 2018, 4(2): 25.
doi: 10.3390/fermentation4020025 URL |
[41] |
Kobayashi M, Hirai N, Kurimura Y, et al. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis[J]. Plant Growth Regul, 1997, 22: 79-85.
doi: 10.1023/A:1005862809711 URL |
[42] |
Mandal MK, Chanu NK, Chaurasia N. Exogenous addition of indole acetic acid and kinetin under nitrogen-limited medium enhances lipid yield and expression of glycerol-3-phosphate acyltransferase & diacylglycerol acyltransferase genes in indigenous microalgae: a potential approach for biodiesel production[J]. Bioresour Technol, 2020, 297: 122439.
doi: 10.1016/j.biortech.2019.122439 URL |
[43] |
Renuka N, et al. Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation[J]. Energy Convers Manag, 2018, 168: 522-528.
doi: 10.1016/j.enconman.2018.05.029 URL |
[44] |
Yu Z, Song MM, Pei HY, et al. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae[J]. Bioresour Technol, 2017, 239: 87-96.
doi: 10.1016/j.biortech.2017.04.120 URL |
[45] |
Touliabah HES, Almutairi AW. Effect of phytohormones supplementation under nitrogen depletion on biomass and lipid production of Nannochloropsis oceanica for integrated application in nutrition and biodiesel[J]. Sustainability, 2021, 13(2): 592.
doi: 10.3390/su13020592 URL |
[46] | Mousa A, El-Zamik F, Hegazy M, et al. Maximizing lipids production from some local cultures of microalgae using phytohormones[J]. Zagazig J Agric Res, 2018, 45(6): 2087-2099. |
[47] |
Renuka N, Guldhe A, Singh P, et al. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress[J]. Energy Convers Manag, 2017, 140: 14-23.
doi: 10.1016/j.enconman.2017.02.065 URL |
[48] |
Jusoh M, Loh SH, Aziz A, et al. Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthetic genes in Chlorella vulgaris UMT-M1[J]. Appl Biochem Biotechnol, 2019, 188(2): 450-459.
doi: 10.1007/s12010-018-02937-4 |
[49] |
Arora S, Mishra G. Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830[J]. J Appl Phycol, 2021, 33(1): 287-299.
doi: 10.1007/s10811-020-02317-8 |
[50] |
Wu GX, Gao ZQ, Du HM, et al. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains[J]. J Gen Appl Microbiol, 2018, 64(1): 42-49.
doi: 10.2323/jgam.2017.06.001 URL |
[51] |
Lin YH, Dai Y, Xu WN, et al. The growth, lipid accumulation and fatty acid profile analysis by abscisic acid and indol-3-acetic acid induced in Chlorella sp. FACHB-8[J]. Int J Mol Sci, 2022, 23(7): 4064.
doi: 10.3390/ijms23074064 URL |
[52] |
Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A, et al. The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus(Chlorophyceae)[J]. Plant Physiol Biochem, 2018, 124: 175-183.
doi: 10.1016/j.plaphy.2018.01.016 URL |
[53] | Wang Q, Zhou X, Jin WB, et al. Enhancing cultivation of biodiesel-promising microalgae Chlorella pyrenoidosa using plant hormones in municipal wastewater[J]. Biomass Convers Biorefinery, 2021: 1-11. |
[54] |
Udayan A, Sabapathy H, Arumugam M. Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201[J]. Bioresour Technol, 2020, 310: 123437.
doi: 10.1016/j.biortech.2020.123437 URL |
[55] |
Yu XJ, Sun J, Sun YQ. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp[J]. Biochem Eng J, 2016, 112: 258-268.
doi: 10.1016/j.bej.2016.05.002 URL |
[56] |
Nazir Y, Halim H, Prabhakaran P, et al. Different classes of phytohormones act synergistically to enhance the growth, lipid and DHA biosynthetic capacity of Aurantiochytrium sp. SW1[J]. Biomolecules, 2020, 10(5): 755.
doi: 10.3390/biom10050755 URL |
[57] |
Liu C, Hu B, Cheng YL, et al. Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments[J]. Bioresour Technol, 2021, 337: 125398.
doi: 10.1016/j.biortech.2021.125398 URL |
[58] |
Alsenani F, Wass TJ, Ma RJ, et al. Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae[J]. Algal Res, 2019, 37: 320-335.
doi: 10.1016/j.algal.2018.12.002 |
[59] | Mousavi P, Morowvat M, Montazeri-Najafabady N, et al. Investigating the effects of phytohormones on growth and β-carotene production in a naturally isolates stain of Dunaliella salina[J]. J App Pharm Sci, 2016: 164-171. |
[60] |
Ding W, Zhao YT, Xu JW, et al. Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis[J]. J Agric Food Chem, 2018, 66(29): 7701-7711.
doi: 10.1021/acs.jafc.8b02178 URL |
[61] |
Zhao YT, Shang MM, Xu JW, et al. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid[J]. Process Biochem, 2015, 50(12): 2072-2077.
doi: 10.1016/j.procbio.2015.09.004 URL |
[62] |
Lee CS, Choi YE, Yun YS. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application[J]. J Biotechnol, 2016, 236: 120-127.
doi: 10.1016/j.jbiotec.2016.08.012 URL |
[63] |
Imlay JA. Cellular defenses against superoxide and hydrogen peroxide[J]. Annu Rev Biochem, 2008, 77: 755-776.
doi: 10.1146/annurev.biochem.77.061606.161055 pmid: 18173371 |
[64] |
Tiwari S, Prasad SM. Exogenous phytohormones modulates cypermethrin stress in Anabaena sp. and Nostoc muscorum: toxicity alleviation by up-regulation of ascorbate-glutathione cycle[preprint]. ResearchGate, 2021. DOI:10.21203/rs.3.rs-415081/v1.
doi: 10.21203/rs.3.rs-415081/v1 |
[65] |
Ding W. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance[J]. Algal Res, 2018, 33: 256-265.
doi: 10.1016/j.algal.2018.05.021 URL |
[66] |
Li XM, Zhang XN, Zhao YT, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresour Technol, 2020, 315: 123833.
doi: 10.1016/j.biortech.2020.123833 URL |
[67] |
Fu L, Li QC, Chen CL, et al. Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth[J]. Chemosphere, 2021, 265: 129084.
doi: 10.1016/j.chemosphere.2020.129084 URL |
[68] |
Gao F, Yang L, Chen AJ, et al. Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa[J]. Bioresour Technol, 2022, 351: 126900.
doi: 10.1016/j.biortech.2022.126900 URL |
[69] |
Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, et al. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress[J]. Sci Rep, 2020, 10(1): 10193.
doi: 10.1038/s41598-020-67085-4 pmid: 32576894 |
[70] |
Pérez-Pérez ME, Couso I, Heredia-Martínez LG, et al. Monitoring autophagy in the model green microalga Chlamydomonas reinhardtii[J]. Cells, 2017, 6(4): 36.
doi: 10.3390/cells6040036 URL |
[71] |
Tran QG, Cho K, Kim U, et al. Enhancement of β-carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii[J]. Bioresour Technol, 2019, 292: 121937.
doi: 10.1016/j.biortech.2019.121937 URL |
[72] |
Li XM, Gu D, You JK, et al. Gamma-aminobutyric acid coupled with copper ion stress stimulates lipid production of green microalga Monoraphidium sp. QLY-1 through multiple mechanisms[J]. Bioresour Technol, 2022, 352: 127091.
doi: 10.1016/j.biortech.2022.127091 URL |
[73] |
Zhang Z, Sun DZ, Cheng KW, et al. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation[J]. Bioresour Technol, 2018, 247: 610-615.
doi: 10.1016/j.biortech.2017.09.133 URL |
[74] |
Qiao TS, Gu D, Zhu LY, et al. Coupling of myo-inositol with salinity regulates ethylene-induced microalgal lipid hyperproduction in molasses wastewater[J]. Sci Total Environ, 2022, 818: 151765.
doi: 10.1016/j.scitotenv.2021.151765 URL |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[5] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[6] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[9] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[10] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[11] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[12] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[13] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[14] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[15] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||