Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 160-172.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1253
Previous Articles Next Articles
WEI Xi-ya(), QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi()
Received:
2022-10-11
Online:
2023-07-26
Published:
2023-08-17
Contact:
LI Ying-zhi
E-mail:1534536534@qq.com;liyz@gdou.edu.cn
WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum[J]. Biotechnology Bulletin, 2023, 39(7): 160-172.
Fig. 1 Effects of seed priming with melatonin(MT)at different concentration on the root length(A), above ground height(B)and root shoot ratio(C)of C. annuum under salt stress The above data are mean ± standard deviation(n=3). Different letters represent significant differences(P<0.05). The same below
Fig. 2 Effects of melatonin at different concentration on the plant fresh weight(A), leaf fresh weight(B), stem fresh weight(C)and root fresh weight(D)of C. annuum under salt stress
Fig. 3 Effects of melatonin at different concentration on the plant dry weight(A), leaf dry weight(B), stem dry weight(C)and root dry weight(D)of C. annuum under salt stress
Fig. 4 Chlorophyll fluorescence parameter Fv'/Fm'(A), Qp(B), NPQ(C), Fo(D), Fv/F0(E), Fv/Fm(F)and SPAD value(G)in the leaves of C. annuum affected by melatonin at different concentration
Fig. 5 Effects of melatonin at different concentration on the contents of MDA(A), hydrogen peroxide(B)and superoxide anion(C)in the leaves ofC. annuum under salt stress
Fig. 6 Effects of melatonin at different concentrations on the contents of soluble sugar(A), soluble protein(B)and proline(C)in the leaves of C. annuum under salt stress
Fig. 10 Melatonin at different concentrations affecting the contents and proportions of Na+(A), K+(B)and Na+/K+(C)in the leaves, stems and roots of C. annuum under salt stress
[1] | 魏佳, Richard John Tiika, 段慧荣, 等. NaCl胁迫下黑果枸杞幼苗生长及Na+、K+吸收与分配的变化[J]. 西北农业学报, 2022, 31(2): 193-201. |
Wei J, Tiika R, Duan HR, et al. Seedling growth of Lycium ruthenicum Murr and change of Na+ and K+ absorption and distribution under NaCl stress[J]. Acta Agric Boreali Occidentalis Sin, 2022, 31(2): 193-201. | |
[2] |
Shrivastava P, et al. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2): 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642 |
[3] | 斯日古楞, 王宏鹏. NaHCO3胁迫对饲用燕麦地上部分K+、Na+含量的影响[J]. 东北农业科学, 2022, 47(6):94-97. |
Siriguleng, WANG HP. Na+ and K+ ion accumulation in forage oat aboveground part under NaHCO3 stress[J]. J Northeast Agric Sci, 2022, 47(6):94-97. | |
[4] | 郭家鑫, 鲁晓宇, 陶一凡, 等. 盐碱胁迫对棉花生长和养分吸收的影响[J]. 干旱地区农业研究, 2022, 40(4): 23-32, 59. |
Guo JX, Lu XY, Tao YF, et al. Effects of saline and alkaline stresses ongrowth and nutrient uptake of cotton[J]. Agric Res Arid Areas, 2022, 40(4): 23-32, 59. | |
[5] | 曾长立, 陈禅友. 外源水杨酸降低辣椒幼苗盐害的生理效应[J]. 东北农业大学学报, 2010, 41(11): 32-37. |
Zeng CL, Chen YC. Physiological effect of exogenous salicylic acid on decreasing salt damage to pepper seedlings[J]. J Northeast Agric Univ, 2010, 41(11): 32-37. | |
[6] | 张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性[J]. 中国农业科学, 2010, 43(1): 123-131. |
Zhang ZG, Shang QM. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress[J]. Sci Agric Sin, 2010, 43(1): 123-131. | |
[7] | 胡晋. 种子引发及其效应[J]. 种子, 1998, 17(2): 33-35. |
Hu J. Seed priming and its effects on seeds[J]. Seed, 1998, 17(2): 33-35. | |
[8] | 张卫华, 郝丽珍, 胡宁宝, 等. 种子引发及其效应[J]. 种子, 2004(6):49-51. |
Zhang WH, Hao LZ, Hu NB, et al. Seed priming and its effects on seeds[J]. Seed, 2004(6):49-51. | |
[9] | 阮松林, 薛庆中. 植物的种子引发[J]. 植物生理学通讯, 2002, 38(2): 198-202. |
Ruan SL, Xue QZ. Seed priming of plant[J]. Plant Physiol Commun, 2002, 38(2): 198-202. | |
[10] |
Gao YP, Young L, Bonham-Smith P, et al. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions[J]. Plant Mol Biol, 1999, 40(4): 635-644.
pmid: 10480387 |
[11] |
Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds[J]. J Plant Physiol, 2016, 192: 38-46.
doi: 10.1016/j.jplph.2015.12.011 URL |
[12] |
邹学校, 胡博文, 熊程, 等. 中国辣椒育种60年回顾与展望[J]. 园艺学报, 2022, 49(10): 2099-2118.
doi: 10.16420/j.issn.0513-353x.2022-0677 |
Zou XX, Hu BW, Xiong C, et al. Review and prospects of pepper breeding for the past 60 years in China[J]. Acta Hortic Sin, 2022, 49(10): 2099-2118.
doi: 10.16420/j.issn.0513-353x.2022-0677 |
|
[13] |
李平平, 张祥, 刘雨婷, 等. 辣椒63份种质果皮颜色与呈色物质的关系[J]. 园艺学报, 2022, 49(7): 1589-1601.
doi: 10.16420/j.issn.0513-353x.2021-0449 |
Li PP, Zhang X, Liu YT, et al. Studies on the relationship between pigment composition and fruit coloration of 63 peppers[J]. Acta Hortic Sin, 2022, 49(7): 1589-1601.
doi: 10.16420/j.issn.0513-353x.2021-0449 |
|
[14] | 赵玥, 辛霞, 王宗礼, 等. 种子引发机理研究进展及牧草种子引发研究展望[J]. 中国草地学报, 2012, 34(3): 102-108. |
Zhao Y, Xin X, Wang ZL, et al. Research progress and prospects in the mechanism of seed priming[J]. Chin J Grassland, 2012, 34(3): 102-108. | |
[15] |
Yan HF, Mao PS. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat(Avena sativa L.) seeds[J]. Int J Mol Sci, 2021, 22(2): 811.
doi: 10.3390/ijms22020811 URL |
[16] | 张娜, 蒋庆, 李殿波, 等. 外源施加褪黑素对NaCl胁迫下狼尾草种子萌发及相关生理指标的影响[J]. 中国农业大学学报, 2014, 19(4): 54-60. |
Zhang N, Jiang Q, Li DB, et al. Effect of exogenous melatonin on germination of Pennisetum alopecuroides under NaCl stress[J]. J China Agric Univ, 2014, 19(4): 54-60. | |
[17] | 毛培胜, 张晔, 黄琪, 等. 褪黑素引发对敖汉苜蓿种子碱性盐胁迫的缓解作用[J]. 中国草地学报, 2020, 42(3): 30-36. |
Mao PS, Zhang Y, Huang Q, et al. Physiological responses of Aohan alfalfa seeds to melatonin priming under alkaline salt stress[J]. Chin J Grassland, 2020, 42(3): 30-36. | |
[18] |
Posmyk MM, Kuran HN, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations[J]. J Pineal Res, 2008, 45(1): 24-31.
doi: 10.1111/j.1600-079X.2007.00552.x pmid: 18205729 |
[19] | 董秋丽, 王聪聪, 郑川, 等. 褪黑素引发对达乌里胡枝子种子干旱萌发的影响[J]. 中国草地学报, 2022, 44(7): 114-120. |
Dong QL, Wang CC, Zheng C, et al. Effects of melatonin priming on germination of lespedezad avurica seeds under drought stress[J]. Chin J Grassland, 2022, 44(7): 114-120. | |
[20] |
Kołodziejczyk I, Dzitko K, Szewczyk R, et al. Exogenous melatonin improves corn(Zea mays L.) embryo proteome in seeds subjected to chilling stress[J]. J Plant Physiol, 2016, 193: 47-56.
doi: 10.1016/j.jplph.2016.01.012 URL |
[21] |
刘金海, 蒋金娟, 罗富成, 等. 外源二聚丙三醇对非洲狗尾草种子萌发及幼苗生长的影响[J]. 草地学报, 2022, 30(4): 950-956.
doi: 10.11733/j.issn.1007-0435.2022.04.021 |
Liu JH, Jiang JJ, Luo FC, et al. Effects of exogenous diglycerol treatment on seed germination and seedling growth of Setaria sphacelata ‘narok’[J]. Acta Agrestia Sin, 2022, 30(4): 950-956. | |
[22] | 刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2010. |
Liu JY, Liu X. Experimental Course of Plant Physiology[M]. Beijing: Higher Education Press, 2010. | |
[23] | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5): 867-880. |
[24] | 王俊力, 王岩, 赵天宏, 等. 臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响[J]. 生态学报, 2011, 31(8): 2068-2075. |
Wang JL, Wang Y, Zhao TH, et al. Effects of ozone on AsA-GSH cycle in soybean leaves[J]. Acta Ecol Sin, 2011, 31(8): 2068-2075. | |
[25] | 王旭明, 赵夏夏, 黄露莎, 等. 盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应[J]. 热带作物学报, 2018, 39(11): 2140-2146. |
Wang XM, Zhao XX, Huang LS, et al. The Na+ and K+ accumulative effect of four different salt tolerance genotypes in rice under salt stress[J]. Chin J Trop Crops, 2018, 39(11): 2140-2146. | |
[26] |
刘德帅, 姚磊, 徐伟荣, 等. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126.
doi: 10.11983/CBB21146 |
Liu DS, Yao L, Xu WR, et al. Research progress of melatonin in plant stress resistance[J]. Chin Bull Bot, 2022, 57(1): 111-126. | |
[27] |
Zhang Y, et al. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways[J]. Ind Crops Prod, 2021, 169: 113671.
doi: 10.1016/j.indcrop.2021.113671 URL |
[28] |
Heshmati S, et al. Role of melatonin seed priming on antioxidant enzymes and biochemical responses of Carthamus tinctorius L. under drought stress conditions[J]. Plant Stress, 2021, 2: 100023.
doi: 10.1016/j.stress.2021.100023 URL |
[29] |
Liang D, et al. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress[J]. Sci Hortic, 2019, 246: 34-43.
doi: 10.1016/j.scienta.2018.10.058 URL |
[30] |
Sezer İ, et al. Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels[J]. Sci Hortic, 2021, 288: 110376.
doi: 10.1016/j.scienta.2021.110376 URL |
[31] | 钱玥, 饶良懿. 盐碱胁迫对枸杞幼苗生长与叶绿素荧光特性的影响[J]. 森林与环境学报, 2022, 42(3): 271-278. |
Qian Y, Rao LY. Effects of saline-alkali stress on the growth and chlorophyll fluorescence characteristics of Lycium barbarum seedlings[J]. J For Environ, 2022, 42(3): 271-278. | |
[32] |
南思睿, 罗永忠, 于思敏, 等. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响[J]. 草地学报, 2022, 30(5): 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014 |
Nan SR, Luo YZ, Yu SM, et al. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. xingjiangdaye seedlings[J]. Acta Agrestia Sin, 2022, 30(5): 1141-1149. | |
[33] |
Liu K, Jing TT, Wang YN, et al. Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI[J]. Environ Exp Bot, 2022, 200: 104915.
doi: 10.1016/j.envexpbot.2022.104915 URL |
[34] |
Shah AA, Ahmed S, Ali A, et al. 2-Hydroxymelatonin mitigates cadmium stress in Cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines[J]. Chemosphere, 2020, 243: 125308.
doi: 10.1016/j.chemosphere.2019.125308 URL |
[35] | 张功臣, 秦玉红, 王波, 等. 生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响[J]. 土壤通报, 2022, 53(4): 931-938. |
Zhang GC, Qin YH, Wang B, et al. Effects of biochar on the antioxidant enzyme activities and mineral element contents in cucumber leaves under salt stress[J]. Chin J Soil Sci, 2022, 53(4): 931-938. | |
[36] |
Li RQ, Wu LQ, Shao YF, et al. Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways[J]. Plant Physiol Biochem, 2022, 179: 65-77.
doi: 10.1016/j.plaphy.2022.03.016 URL |
[37] |
Fu JJ, et al. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass[J]. Environ Exp Bot, 2022, 196: 104815.
doi: 10.1016/j.envexpbot.2022.104815 URL |
[38] |
Islam ATMT, et al. Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress[J]. Sci Hortic, 2022, 304: 111304.
doi: 10.1016/j.scienta.2022.111304 URL |
[39] | 付媛媛, 江晓慧, 申孝军, 等. 盐胁迫下棉花幼苗叶片K+、Na+含量与光合参数的关系[J]. 生态学杂志, 2021, 40(6): 1716-1722. |
Fu YY, Jiang XH, Shen XJ, et al. The relationship between foliar K+ and Na+ concentrations and photosynthetic parameters of cotton seedlings under salt stress[J]. Chin J Ecol, 2021, 40(6): 1716-1722. | |
[40] |
Yan FY, et al. Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS[J]. Environ Exp Bot, 2021, 182: 104328.
doi: 10.1016/j.envexpbot.2020.104328 URL |
[1] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[2] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | LI Yue, YU Wan-xian, LI Ning, YAO Ming-hua, LI Feng, DENG Ying-tian. Inoculation Method for Colletotrichum in Pepper(Capsicum annuum)Seedlings [J]. Biotechnology Bulletin, 2023, 39(4): 221-226. |
[5] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[6] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[7] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[8] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[9] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[10] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[11] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[12] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
[13] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[14] | MA Ya-nan, LU Xu, WEI Yun-chun, LI Kang, WEI Ruo-nan, LI Sheng, MA Shao-ying. Identification and Tissue Specific Expression Analysis of AKR Gene Family in Grape [J]. Biotechnology Bulletin, 2021, 37(8): 141-151. |
[15] | LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6 [J]. Biotechnology Bulletin, 2021, 37(7): 137-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||