Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 136-146.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0251
Previous Articles Next Articles
WEN Xiao-lei1,2(), LI Jian-yuan3, LI Na4, ZHANG Na1, YANG Wen-xiang1()
Received:
2023-03-21
Online:
2023-09-26
Published:
2023-10-24
Contact:
YANG Wen-xiang
E-mail:xiaoleiwen@sina.com;wenxiangyang2003@163.com
WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina[J]. Biotechnology Bulletin, 2023, 39(9): 136-146.
组分 Component | 浓度 Concentration | ||||
---|---|---|---|---|---|
3-AT/(mmol·L-1) | 0 | 10 | 20 | 30 | 40 |
ABA/(ng·mL-1) | 0 | 200 | 400 | 600 | 800 |
Table 1 SD-Trp/-His/-Ade concentrations of different components
组分 Component | 浓度 Concentration | ||||
---|---|---|---|---|---|
3-AT/(mmol·L-1) | 0 | 10 | 20 | 30 | 40 |
ABA/(ng·mL-1) | 0 | 200 | 400 | 600 | 800 |
Fig. 4 Electrophoresis maps of pGBKT7 double digestion product(A)and Pt34084 PCR product(B) M: Maker; A: 1: circular pGR107 plasmid; 2: pGR107 after enzyme digestion. B: 1-2: indicated Pt34084
Fig 7 Self-activation inhibition test of Y2Hgold[pGBKT7-Pt34084] 1, 2, 3: OD600 = 1, 0.1, 0.01; A: SD/-Trp; B: SD /-Trp/-His/-Ade; C: SD/-Trp/-His/-Ade/10 mmol/L 3-AT/200 ng/mL ABA; D: SD/-Trp/-His/-Ade/20 mmol/L 3-AT/400 ng/mL ABA; E: SD/-Trp/-His/-Ade/30 mmol/L 3-AT/600 ng/mL ABA; F: SD/-Trp/-His/-Ade/40 mmol/L 3-AT/800 ng/mL ABA
编号No. | 基因登录号 GenBank No. | 候选蛋白 Candidate proteins | 来源 Source | 一致性 Identity/% |
---|---|---|---|---|
1 | XM_044577317.1 | 光照后叶绿素荧光增加蛋白,类叶绿体 Post-illumination chlorophyll fluorescence increasing protein, chloroplast | 小麦 T. aestivum | 100.00 |
2 | XM_037619534.1 | 光系统I组装蛋白2,类叶绿体 Protein photosystem I assembly 2, chloroplast | 野生型二粒小麦 T. dicoccoides | 99.61 |
3 | XM_044569896.1 | 过氧化物酶11 Peroxidase 11-like | 小麦 T. aestivum | 89.11 |
4 | XM_044551498.1 | 细胞壁连接的类受体激酶 Wall-associated receptor kinase 2-like | 小麦 T. aestivum | 88.27 |
5 | XM_044521323.1 | 蛋白酶体组装伴侣4 Proteasome assembly chaperone 4-like | 小麦 T. aestivum | 99.02 |
6 | XM_044485885.1 | 富含丝氨酸的无特征蛋白 Uncharacterized serine-rich protein | 小麦 T. aestivum | 99.35 |
7 | XM_044514591.1 | 无特征蛋白 Uncharacterized protein LOC123092769 | 小麦 T. aestivum | 99.47 |
8 | XM_037564333.1 | 无特征蛋白 Uncharacterized protein LOC119285117 | 野生型二粒小麦 T. dicoccoides | 98.90 |
9 | XM_020296657.3 | 蛋白磷酸酶2C 26 Protein phosphatase 2C 26 | 山羊草 Aegilops tauschii | 99.40 |
10 | XM_003333436.2 | 假定蛋白 Hypothetical protein | 小麦秆锈菌 P. graminis f. sp. tritici | 85.12 |
11 | XM_037577936.1 | 60S 核糖体蛋白 L15-2 60S ribosomal protein L15-2 | 野生型二粒小麦 T. dicoccoides | 99.72 |
12 | XM_020343972.3 | 无特征蛋白 Uncharacterized protein LOC109785374 | 山羊草 A. tauschii | 99.13 |
13 | XM_020323127.3 | E3泛素蛋白连接酶 XBOS34 Probable E3 ubiquitin-protein ligase XBOS34 | 山羊草 A. tauschii | 99.75 |
14 | XM_044474326.1 | 无特征蛋白 Uncharacterized protein LOC123051461 | 小麦 T. aestivum | 93.80 |
15 | XM_003323195.2 | 甲硫氨酰氨基肽酶 Methionyl aminopeptidase | 小麦秆锈菌 P. graminis f. sp. tritici | 88.90 |
16 | XM_044559490.1 | 含卤酸脱卤酶类水解酶结构域的蛋白质 Haloacid dehalogenase-like hydrolase domain-containing protein At2g33255 | 小麦 T. aestivum | 98.92 |
Table 2 Pt34084 candidate effector protein
编号No. | 基因登录号 GenBank No. | 候选蛋白 Candidate proteins | 来源 Source | 一致性 Identity/% |
---|---|---|---|---|
1 | XM_044577317.1 | 光照后叶绿素荧光增加蛋白,类叶绿体 Post-illumination chlorophyll fluorescence increasing protein, chloroplast | 小麦 T. aestivum | 100.00 |
2 | XM_037619534.1 | 光系统I组装蛋白2,类叶绿体 Protein photosystem I assembly 2, chloroplast | 野生型二粒小麦 T. dicoccoides | 99.61 |
3 | XM_044569896.1 | 过氧化物酶11 Peroxidase 11-like | 小麦 T. aestivum | 89.11 |
4 | XM_044551498.1 | 细胞壁连接的类受体激酶 Wall-associated receptor kinase 2-like | 小麦 T. aestivum | 88.27 |
5 | XM_044521323.1 | 蛋白酶体组装伴侣4 Proteasome assembly chaperone 4-like | 小麦 T. aestivum | 99.02 |
6 | XM_044485885.1 | 富含丝氨酸的无特征蛋白 Uncharacterized serine-rich protein | 小麦 T. aestivum | 99.35 |
7 | XM_044514591.1 | 无特征蛋白 Uncharacterized protein LOC123092769 | 小麦 T. aestivum | 99.47 |
8 | XM_037564333.1 | 无特征蛋白 Uncharacterized protein LOC119285117 | 野生型二粒小麦 T. dicoccoides | 98.90 |
9 | XM_020296657.3 | 蛋白磷酸酶2C 26 Protein phosphatase 2C 26 | 山羊草 Aegilops tauschii | 99.40 |
10 | XM_003333436.2 | 假定蛋白 Hypothetical protein | 小麦秆锈菌 P. graminis f. sp. tritici | 85.12 |
11 | XM_037577936.1 | 60S 核糖体蛋白 L15-2 60S ribosomal protein L15-2 | 野生型二粒小麦 T. dicoccoides | 99.72 |
12 | XM_020343972.3 | 无特征蛋白 Uncharacterized protein LOC109785374 | 山羊草 A. tauschii | 99.13 |
13 | XM_020323127.3 | E3泛素蛋白连接酶 XBOS34 Probable E3 ubiquitin-protein ligase XBOS34 | 山羊草 A. tauschii | 99.75 |
14 | XM_044474326.1 | 无特征蛋白 Uncharacterized protein LOC123051461 | 小麦 T. aestivum | 93.80 |
15 | XM_003323195.2 | 甲硫氨酰氨基肽酶 Methionyl aminopeptidase | 小麦秆锈菌 P. graminis f. sp. tritici | 88.90 |
16 | XM_044559490.1 | 含卤酸脱卤酶类水解酶结构域的蛋白质 Haloacid dehalogenase-like hydrolase domain-containing protein At2g33255 | 小麦 T. aestivum | 98.92 |
[1] |
Hovmøller MS, Walter S, Justesen AF. Escalating threat of wheat rusts[J]. Science, 2010, 329(5990): 369.
doi: 10.1126/science.1194925 pmid: 20651122 |
[2] |
Huerta-Espino J, Singh RP, Germán S, et al. Global status of wheat leaf rust caused by Puccinia triticina[J]. Euphytica, 2011, 179(1): 143-160.
doi: 10.1007/s10681-011-0361-x URL |
[3] | Boydom A, Dawit W, Getaneh W. Evaluation of detached leaf assay for assessing leaf rust(Puccinia triticina eriks.) resistance in wheat[J]. J Plant Pathol Microbiol, 2013, 4: 5. |
[4] | 刘源. 66个小麦品种(系)抗叶锈基因鉴定及Kenya Kudu成株抗叶锈QTL定位[D]. 保定: 河北农业大学, 2020. |
Liu Y. Identification of leaf rust resistance genes of 66 wheat varieties(lines)and QTL mapping of leaf rust resistance in Kenya Kudu adult plants[D]. Baoding: Hebei Agricultural University, 2020. | |
[5] | Voegele RT, Hahn M, Mendgen K. The Uredinales: cytology, biochemistry, and molecular biology[M]// Plant Relationships. Berlin, Heidelberg: Springer, 2009: 69-98. |
[6] |
Voegele RT, Mendgen KW. Nutrient uptake in rust fungi: how sweet is parasitic life?[J]. Euphytica, 2011, 179(1): 41-55.
doi: 10.1007/s10681-011-0358-5 URL |
[7] |
Catanzariti AM, Dodds PN, Ellis JG. Avirulence proteins from haustoria-forming pathogens[J]. FEMS Microbiol Lett, 2007, 269(2): 181-188.
pmid: 17343675 |
[8] |
Chaudhari P, Ahmed B, Joly DL, et al. Effector biology during biotrophic invasion of plant cells[J]. Virulence, 2014, 5(7): 703-709.
doi: 10.4161/viru.29652 pmid: 25513771 |
[9] |
Lewis JD, Guttman DS, Desveaux D. The targeting of plant cellular systems by injected type III effector proteins[J]. Semin Cell Dev Biol, 2009, 20(9): 1055-1063.
doi: 10.1016/j.semcdb.2009.06.003 pmid: 19540926 |
[10] |
Vargas WA, Sanz-Martín JM, Rech GE, et al. A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development[J]. Mol Plant Microbe Interactions, 2016, 29(2): 83-95.
doi: 10.1094/MPMI-09-15-0209-R URL |
[11] |
Win J, Chaparro-Garcia A, Belhaj K, et al. Effector biology of plant-associated organisms: concepts and perspectives[J]. Cold Spring Harb Symp Quant Biol, 2012, 77: 235-247.
doi: 10.1101/sqb.2012.77.015933 pmid: 23223409 |
[12] |
McNally KE, Menardo F, Lüthi L, et al. Distinct domains of the AVRPM3A2/F2 avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function[J]. New Phytol, 2018, 218(2): 681-695.
doi: 10.1111/nph.2018.218.issue-2 URL |
[13] |
Bourras S, Kunz L, Xue MF, et al. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat[J]. Nat Commun, 2019, 10: 2292.
doi: 10.1038/s41467-019-10274-1 pmid: 31123263 |
[14] |
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066.
doi: S0092-8674(20)30218-X pmid: 32164908 |
[15] |
He Q, McLellan H, Boevink PC, et al. All Roads lead to susceptibility: the many modes of action of fungal and oomycete intracellular effectors[J]. Plant Commun, 2020, 1(4): 100050.
doi: 10.1016/j.xplc.2020.100050 URL |
[16] |
Wang SS, Xing RK, Wang Y, et al. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity[J]. New Phytol, 2021, 229(6): 3424-3439.
doi: 10.1111/nph.17120 pmid: 33251609 |
[17] | Liu CH, Pedersen C, Schultz-Larsen T, et al. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases[J]. New Phytol, 2016: 2016-21278. |
[18] |
Wang XD, Yang BJ, Li K, et al. A conserved Puccinia striiformis protein interacts with wheat NPR1 and reduces induction of Pathogenesis-Related genes in response to pathogens[J]. Mol Plant Microbe Interactions, 2016, 29(12): 977-989.
doi: 10.1094/MPMI-10-16-0207-R URL |
[19] |
Petre B, Saunders DGO, Sklenar J, et al. Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies[J]. PLoS One, 2016, 11(2): e0149035.
doi: 10.1371/journal.pone.0149035 URL |
[20] |
Qi T, Guo J, Liu P, et al. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat[J]. Mol Plant, 2019, 12(12): 1624-1638.
doi: S1674-2052(19)30328-4 pmid: 31606466 |
[21] |
Yang Q, Huai BY, Lu YX, et al. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease[J]. New Phytol, 2020, 225(2): 880-895.
doi: 10.1111/nph.16199 pmid: 31529497 |
[22] |
Xu Q, Tang CL, Wang XD, et al. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function[J]. Nat Commun, 2019, 10: 5571.
doi: 10.1038/s41467-019-13487-6 pmid: 31804478 |
[23] |
Yin CT, Ramachandran SR, Zhai Y, et al. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses[J]. New Phytol, 2019, 222(3): 1561-1572.
doi: 10.1111/nph.2019.222.issue-3 URL |
[24] |
Liu C, Wang YQ, Wang YF, et al. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat[J]. PLoS Pathog, 2022, 18(7): e1010702.
doi: 10.1371/journal.ppat.1010702 URL |
[25] |
Andres S, William R, Wang SC, et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99[J]. Science, 2017, 358(6370): 1604-1606.
doi: 10.1126/science.aao7294 URL |
[26] |
Chen JP, Upadhyaya NM, Ortiz D, et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat[J]. Science, 2017, 358(6370): 1607-1610.
doi: 10.1126/science.aao4810 URL |
[27] |
Stephen B, Eduard A, Gitta C, et al. Dissection of cell death induction by wheat stem rust resistance protein Sr35 and its matching effector AvrSr35[J]. Mol Plant Microbe Interact MPMI, 2020, 33(2): 308-319.
doi: 10.1094/MPMI-08-19-0216-R URL |
[28] |
Segovia V, Bruce M, Shoup Rupp JL, et al. Two small secreted proteins from Puccinia triticinainduce reduction of β-glucoronidase transient expression in wheat isolines containing Lr9, Lr24 and Lr26[J]. Can J Plant Pathol, 2016, 38(1): 91-102.
doi: 10.1080/07060661.2016.1150884 URL |
[29] |
齐悦, 吕峻元, 张悦, 等. 小麦叶锈菌效应蛋白Pt18906激发TcLr27+31的双层防御反应[J]. 中国农业科学, 2020, 53(12): 2371-2384.
doi: 10.3864/j.issn.0578-1752.2020.12.006 |
Qi Y, Lü JY, Zhang Y, et al. Puccinia triticina effector protein Pt18906 triggered two-layer defense reaction in TcLr27+31[J]. Sci Agric Sin, 2020, 53(12): 2371-2384. | |
[30] |
Qi Y, Li JY, Mapuranga J, et al. Wheat leaf rust fungus effector Pt13024 is avirulent to TcLr30[J]. Front Plant Sci, 2023, 13: 1098549.
doi: 10.3389/fpls.2022.1098549 URL |
[31] | 张悦. 小麦叶锈菌效应蛋白Pt2567的特性及功能分析[D]. 保定: 河北农业大学, 2020. |
Zhang Y. Characteristics and functional analysis of wheat leaf rust effector protein Pt2567[D]. Baoding: Hebei Agricultural University, 2020. | |
[32] |
Bi WS, Zhao SQ, Zhao JJ, et al. Rust effector PNPi interacting with wheat TaPR1a attenuates plant defense response[J]. Phytopathol Res, 2020, 2(1): 1-14.
doi: 10.1186/s42483-019-0043-5 |
[33] | 李建嫄. 基于转录组分析的小麦叶锈菌效应蛋白的筛选及功能分析[D]. 保定: 河北农业大学, 2018. |
Li JY. Screening and functional analysis of effector proteins of wheat leaf rust based on transcriptome analysis[D]. Baoding: Hebei Agricultural University, 2018. | |
[34] |
郭金菊, 史亮亮, 王茹芳, 等. 苦瓜果实酵母双杂交文库构建及McRPF互作蛋白筛选[J]. 核农学报, 2022, 36(7): 1293-1299.
doi: 10.11869/j.issn.100-8551.2022.07.1293 |
Guo JJ, Shi LL, Wang RF, et al. Construction of yeast two-hybrid library and screening of McRPF interacting proteins in the fruit of bitter gourd[J]. J Nucl Agric Sci, 2022, 36(7): 1293-1299.
doi: 10.11869/j.issn.100-8551.2022.07.1293 |
|
[35] | 白志英, 王冬梅, 侯春燕, 等. 小麦叶锈菌侵染过程的显微和超微结构[J]. 细胞生物学杂志, 2003(6): 393-397. |
Bai ZY, Wang DM, Hou CY, et al. Microstructure and ultrastructure infected by wheat rust fungus[J]. Chin J Coll Biol, 2003(6): 393-397. | |
[36] | 李舒文, 董笛, 李殷睿智, 等. 蒺藜苜蓿酵母杂交cDNA文库的构建与分析[J]. 分子植物育种, 2021, 19(23): 7861-7866. |
Li SW, Dong D, Li Y, et al. Construction and analysis of a yeast cDNA library from Medicago truncatula[J]. Mol Plant Breed, 2021, 19(23): 7861-7866. | |
[37] | 刘露露, 曲俊杰, 郭泽西, 等. 霜霉菌侵染后葡萄叶片酵母双杂交cDNA文库构建[J]. 南方农业学报, 2020, 51(4): 829-835. |
Liu LL, Qu JJ, Guo ZX, et al. Construction of a yeast two-hybrid cDNA library from Vitis vinifera leaves infected by downy mildew[J]. J South Agric, 2020, 51(4): 829-835. | |
[38] | 王沛雅. 葡萄霜霉菌诱导华东葡萄抗霜霉病基因cDNA文库构建及EST分析[D]. 杨凌: 西北农林科技大学, 2008. |
Wang PY. Construction and EST analysis of cDNA library of downy mildew resistance gene of East China grape induced by downy mildew of grape[D]. Yangling: Northwest A & F University, 2008. | |
[39] | 张引弟, 王荟洁, 陈爱娥, 等. 利用酵母双杂交筛选与致病疫霉菌效应蛋白PITG_07586互作的寄主蛋白[J]. 植物病理学报, 2022, 52(4): 592-600. |
Zhang YD, Wang HJ, Chen AE, et al. Screening of host proteins interacting with effector PITG_07586 of Phytophthora infestans using yeast two-hybrid[J]. Acta Phytopathol Sin, 2022, 52(4): 592-600. | |
[40] | 张凇. 果生炭疽菌效应蛋白CfCE92功能及互作靶标筛选[D]. 杨凌: 西北农林科技大学, 2020. |
Zhang S. Function of effector protein CfCE92 of Colletotrichum gloeosporioides and screening of interaction targets[D]. Yangling: Northwest A & F University, 2020. | |
[41] |
Zhong XT, Li JP, Yang LL, et al. Genome-wide identification and expression analysis of wall-associated kinase(WAK)and WAK-like kinase gene family in response to tomato yellow leaf curl virus infection in Nicotiana benthamiana[J]. BMC Plant Biology, 2023, 23:146.
doi: 10.1186/s12870-023-04112-2 |
[42] |
Dou LL, Li ZF, Shen Q, et al. Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton[J]. BMC Genomics, 2021, 22(1): 85.
doi: 10.1186/s12864-021-07378-8 |
[43] |
Sivaguru M, Ezaki B, He ZH, et al. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis[J]. Plant Physiol, 2003, 132(4): 2256-2266.
doi: 10.1104/pp.103.022129 pmid: 12913180 |
[44] |
Lou HQ, Fan W, Jin JF, et al. A NAC-type transcription factor confers aluminum resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin[J]. Plant Cell Environ, 2020, 43(2): 463-478.
doi: 10.1111/pce.v43.2 URL |
[45] | 程鹏, 徐鹏飞, 范素杰, 等. 野生大豆接种大豆疫霉根腐病菌后过氧化物酶(POD)活性变化[J]. 大豆科学, 2013, 32(2): 197-201. |
Cheng P, Xu PF, Fan SJ, et al. Response of POD activity in Glycine soja inoculated by Phytophthora sojae[J]. Soybean Sci, 2013, 32(2): 197-201. | |
[46] |
阎爱华, 张立峰, 张韫玮, 等. 小麦单基因系TcLr19抗叶锈防卫反应的表达与叶锈菌侵染进程关系的初步研究[J]. 华北农学报, 2013, 28(1): 221-226.
doi: 10.3969/j.issn.1000-7091.2013.01.039 |
Yan AH, Zhang LF, Zhang YW, et al. Relationship between the activity changes of defense enzymes of wheat near isogenic line TcLr19 and the infection process of Puccinia triticina[J]. Acta Agric Boreali Sin, 2013, 28(1): 221-226. | |
[47] |
Hemetsberger C, Herrberger C, Zechmann B, et al. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity[J]. PLoS Pathog, 2012, 8(5): e1002684.
doi: 10.1371/journal.ppat.1002684 URL |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[3] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[4] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[5] | JIANG Hai-rong, CUI Ruo-qi, WANG Yue BAI, Miao ZHANG, Ming-lu , REN Lian-hai. Isolation, Identification and Degradation Characteristics of Functional Bacteria for NH3 and H2S Degradation [J]. Biotechnology Bulletin, 2023, 39(9): 246-254. |
[6] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[7] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[8] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[9] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang, WANG Qing-qing. Increasing the Expression of FAD-dependent Glucose Dehydrogenase by Recombinant Pichia pastoris Using a Combined Strategy [J]. Biotechnology Bulletin, 2023, 39(6): 316-324. |
[10] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[11] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[12] | CUI Ruo-qi, ZHANG Ling-yue, JIANG Hai-rong, ZHANG Yu-ling, ZHANG Ming-lu, REN Lian-hai. Preparation of NH3 and H2S Deodorizing Microbial Agents and Their Deodorizing Effects and Mechanisms on Kitchen Waste Composting [J]. Biotechnology Bulletin, 2023, 39(10): 311-322. |
[13] | WANG Xin-yi, WANG Xiao-qian, WANG Hong-jun, CHAO Yue-hui. Screening, Expression, and Validation of Nanobodies with FLAG Tag [J]. Biotechnology Bulletin, 2023, 39(10): 323-331. |
[14] | LIU Jin-sheng, CHEN Zhen-ya, HUO Yi-xin, GUO Shu-yuan. Application of FACS Technology in the Directed Evolution of Enzyme [J]. Biotechnology Bulletin, 2023, 39(10): 93-106. |
[15] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||