Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 30-39.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0526
Previous Articles Next Articles
ZHOU Wen-jian(
), CUI Xiao-nan, SHI Wei-yang(
)
Received:2024-05-31
Online:2025-02-26
Published:2025-02-28
Contact:
SHI Wei-yang
E-mail:1372036248@qq.com;shiwy1975@163.com
ZHOU Wen-jian, CUI Xiao-nan, SHI Wei-yang. Research Progress in the Application of DNA Methyltransferases in Epigenetics[J]. Biotechnology Bulletin, 2025, 41(2): 30-39.
技术 Technology | 应用 Application | 酶使用类型 Type of enzyme | 引入甲基化 Introducing methylation type | 抗体使用 Application of antibody | 反应方式 Mode of reaction | 测序方法 Sequencing method |
|---|---|---|---|---|---|---|
| nanoNOMe-seq | 染色质可及性/CpG甲基化 | M.CviPI | Gp5mC | 不需要 | 直接反应 | 纳米孔测序 |
| SMAC-seq | 染色质可及性/核小体定位 | M.CviPI/M.SssI/EcoGII | Gp5mC/5mCpG/6mA | 不需要 | 直接反应 | 纳米孔测序 |
| DiMeLo-seq | DNA-蛋白互作/组蛋白修饰 | Protein A-Hia5 | 6mA | 需要 | 抗体介导后反应 | 纳米孔测序 |
Table 1 Comparison of applications and methodologies of three technologies
技术 Technology | 应用 Application | 酶使用类型 Type of enzyme | 引入甲基化 Introducing methylation type | 抗体使用 Application of antibody | 反应方式 Mode of reaction | 测序方法 Sequencing method |
|---|---|---|---|---|---|---|
| nanoNOMe-seq | 染色质可及性/CpG甲基化 | M.CviPI | Gp5mC | 不需要 | 直接反应 | 纳米孔测序 |
| SMAC-seq | 染色质可及性/核小体定位 | M.CviPI/M.SssI/EcoGII | Gp5mC/5mCpG/6mA | 不需要 | 直接反应 | 纳米孔测序 |
| DiMeLo-seq | DNA-蛋白互作/组蛋白修饰 | Protein A-Hia5 | 6mA | 需要 | 抗体介导后反应 | 纳米孔测序 |
Fig. 1 Principle of NOMe-seq and nanoNOMe-seq technologyA: Nucleosome occupancy and methylome sequencing (NOMe-seq ). B: Nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe-seq)
| 1 | Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription [J]. J Struct Biol, 2000, 129(2/3): 102-122. |
| 2 | Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals [J]. Nat Genet, 2003, 33 Suppl: 245-254. |
| 3 | Carter B, Zhao KJ. The epigenetic basis of cellular heterogeneity [J]. Nat Rev Genet, 2021, 22(4): 235-250. |
| 4 | Luo CY, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time [J]. Science, 2018, 361(6409): 1336-1340. |
| 5 | Minnoye L, Marinov GK, Krausgruber T, et al. Chromatin accessibility profiling methods [J]. Nat Rev Methods Primers, 2021, 1: 10. |
| 6 | Boyle AP, Davis S, Shulha HP, et al. High-resolution mapping and characterization of open chromatin across the genome [J]. Cell, 2008, 132(2): 311-322. |
| 7 | Hesselberth JR, Chen XY, Zhang ZH, et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting [J]. Nat Methods, 2009, 6(4): 283-289. |
| 8 | Schones DE, Cui KR, Cuddapah S, et al. Dynamic regulation of nucleosome positioning in the human genome [J]. Cell, 2008, 132(5): 887-898. |
| 9 | Picelli S, Björklund AK, Reinius B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects [J]. Genome Res, 2014, 24(12): 2033-2040. |
| 10 | Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position [J]. Nat Methods, 2013, 10(12): 1213-1218. |
| 11 | Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions [J]. Science, 2007, 316(5830): 1497-1502. |
| 12 | Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [J]. eLife, 2017, 6: e21856. |
| 13 | Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers [J]. Nat Protoc, 2018, 13(5): 1006-1019. |
| 14 | Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells [J]. Nat Commun, 2019, 10(1): 1930. |
| 15 | Kaya-Okur HS, Janssens DH, Henikoff JG, et al. Efficient low-cost chromatin profiling with CUT&Tag [J]. Nat Protoc, 2020, 15(10): 3264-3283. |
| 16 | Li E, Zhang Y. DNA methylation in mammals [J]. Cold Spring Harb Perspect Biol, 2014, 6(5): a019133. |
| 17 | Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases [J]. Annu Rev Biochem, 2005, 74: 481-514. |
| 18 | Seong HJ, Han SW, Sul WJ. Prokaryotic DNA methylation and its functional roles [J]. J Microbiol, 2021, 59(3): 242-248. |
| 19 | Ershova AS, Rusinov IS, Spirin SA, et al. Role of restriction-modification systems in prokaryotic evolution and ecology [J]. Biochemistry, 2015, 80(10): 1373-1386. |
| 20 | Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria [J]. FEMS Microbiol Rev, 2016, 40(5): 575-591. |
| 21 | Ren J, Singh BN, Huang Q, et al. DNA hypermethylation as a chemotherapy target [J]. Cell Signal, 2011, 23(7): 1082-1093. |
| 22 | Jin BL, Li YJ, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? [J]. Genes Cancer, 2011, 2(6): 607-617. |
| 23 | Miremadi A, Oestergaard MZ, Pharoah PDP, et al. Cancer genetics of epigenetic genes [J]. Hum Mol Genet, 2007, 16 Spec No 1: R28-R49. |
| 24 | Ferguson-Smith AC, Greally JM. Epigenetics: perceptive enzymes [J]. Nature, 2007, 449(7159): 148-149. |
| 25 | Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases [J]. Trends Biochem Sci, 2006, 31(6): 306-308. |
| 26 | Buryanov Y, Shevchuk T. The use of prokaryotic DNA methyltransferases as experimental and analytical tools in modern biology [J]. Anal Biochem, 2005, 338(1): 1-11. |
| 27 | Lee I, Razaghi R, Gilpatrick T, et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing [J]. Nat Methods, 2020, 17(12): 1191-1199. |
| 28 | Shipony Z, Marinov GK, Swaffer MP, et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes [J]. Nat Methods, 2020, 17(3): 319-327. |
| 29 | Altemose N, Maslan A, Smith OK, et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide [J]. Nat Methods, 2022, 19(6): 711-723. |
| 30 | Kelly TK, Liu YP, Lay FD, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules [J]. Genome Res, 2012, 22(12): 2497-2506. |
| 31 | Xu M, Kladde MP, Van Etten JL, et al. Cloning, characterization and expression of the gene coding for a cytosine-5-DNA methyltransferase recognizing GpC [J]. Nucleic Acids Res, 1998, 26(17): 3961-3966. |
| 32 | Lay FD, Liu YP, Kelly TK, et al. The role of DNA methylation in directing the functional organization of the cancer epigenome [J]. Genome Res, 2015, 25(4): 467-477. |
| 33 | Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells [J]. eLife, 2017, 6: e23203. |
| 34 | Guo HS, Hu BQ, Yan LY, et al. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells [J]. Cell Res, 2017, 27(2): 165-183. |
| 35 | Gao JP, Zheng YX, Li L, et al. Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts [J]. PLoS Biol, 2021, 19(5): e3001229. |
| 36 | Wang YH, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications [J]. Nat Biotechnol, 2021, 39(11): 1348-1365. |
| 37 | White LK, Hesselberth JR. Modification mapping by nanopore sequencing [J]. Front Genet, 2022, 13: 1037134. |
| 38 | Kerr L, Kafetzopoulos I, Grima R, et al. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation [J]. PLoS Genet, 2023, 19(10): e1010958. |
| 39 | Renbaum P, Abrahamove D, Fainsod A, et al. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI) [J]. Nucleic Acids Res, 1990, 18(5): 1145-1152. |
| 40 | Murray IA, Morgan RD, Luyten Y, et al. The non-specific adenine DNA methyltransferase M.EcoGII [J]. Nucleic Acids Res, 2018, 46(2): 840-848. |
| 41 | Marinov GK, Shipony Z, Kundaje A, et al. Single-molecule multikilobase-Scale profiling of chromatin accessibility using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq [J]. Methods Mol Biol, 2022, 2458: 269-298. |
| 42 | Drozdz M, Piekarowicz A, Bujnicki JM, et al. Novel non-specific DNA adenine methyltransferases [J]. Nucleic Acids Res, 2012, 40(5): 2119-2130. |
| 43 | Weng Z, Ruan FY, Chen WT, et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes [J]. Genome Biol, 2023, 24(1): 61. |
| 44 | Kriukienė E, Labrie V, Khare T, et al. DNA unmethylome profiling by covalent capture of CpG sites [J]. Nat Commun, 2013, 4: 2190. |
| 45 | Gabrieli T, Michaeli Y, Avraham S, et al. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping [J]. Nucleic Acids Res, 2022, 50(16): e92. |
| 46 | Chen YR, Yu S, Zhong SL. Profiling DNA methylation using bisulfite sequencing (BS-seq) [J]. Methods Mol Biol, 2018, 1675: 31-43. |
| 47 | Booth MJ, Branco MR, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution [J]. Science, 2012, 336(6083): 934-937. |
| 48 | Li XW, Guo SY, Cui Y, et al. NT-seq: a chemical-based sequencing method for genomic methylome profiling [J]. Genome Biol, 2022, 23(1): 122. |
| 49 | Liu YB, Siejka-Zielińska P, Velikova G, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution [J]. Nat Biotechnol, 2019, 37(4): 424-429. |
| 50 | Vaisvila R, Chaithanya Ponnaluri VK, Sun ZY, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA [J]. Genome Res, 2021, 31(7): 1280-1289. |
| 51 | Wang T, Fowler JM, Liu L, et al. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution [J]. Nat Chem Biol, 2023, 19(8): 1004-1012. |
| 52 | Feng XR, Cui XL, Zhang LS, et al. Sequencing of N 6-methyl-deoxyadenosine at single-base resolution across the mammalian genome [J]. Mol Cell, 2024, 84(3): 596-610.e6. |
| 53 | Dai Q, Ye C, Irkliyenko I, et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA [J]. Nat Biotechnol, 2024, 42(10): 1559-1570. |
| 54 | Tirnaz S, Batley J. Epigenetics: potentials and challenges in crop breeding [J]. Mol Plant, 2019, 12(10): 1309-1311. |
| 55 | Dalakouras A, Vlachostergios D. Epigenetic approaches to crop breeding: current status and perspectives [J]. J Exp Bot, 2021, 72(15): 5356-5371. |
| 56 | Shi YC, Zhang HJ, Huang SL, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials [J]. Signal Transduct Target Ther, 2022, 7(1): 200. |
| 57 | Shu F, Xiao H, Li QN, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets [J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
| [1] | YUAN Ming-bo, YE Guo-hua, YANG Dan, SONG Dong-xue. Research Progress in DNA Methylation Sequencing Technology [J]. Biotechnology Bulletin, 2024, 40(5): 58-65. |
| [2] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
| [3] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
| [4] | SI Cheng, ZHONG Qi-wen, YANG Shi-peng. Assembly of Pepino Genome Based on PacBio's Third-generation Sequencing Technology [J]. Biotechnology Bulletin, 2022, 38(9): 180-190. |
| [5] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
| [6] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
| [7] | WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction [J]. Biotechnology Bulletin, 2021, 37(8): 253-262. |
| [8] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
| [9] | LIU Zhi-min, YANG Zhi-yi, JI Feng-dan, MEI Zhi-chao, YU Jia-hui, XIE Li-nan. Research Progress of Plant DNA Methylation Under Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(11): 122-132. |
| [10] | JIANG Rui, LÜ Ke-nao, PAN Xue-feng, CUI Xin-xia, SHEN Shi-gang, DING Liang. Current Status and Challenges of Epigenetic Drug Research and Development [J]. Biotechnology Bulletin, 2019, 35(8): 213-225. |
| [11] | XUE Jing-jing, CHEN Song-bi. Variation Analysis of DNA Methylation in Different Development Stages of Cassava [J]. Biotechnology Bulletin, 2018, 34(5): 117-123. |
| [12] | TANG Yong , LIU Xu. Full-length Sequencing of 16S rRNA Gene and Its Analysis Based on the SMRT Sequencing Technology [J]. Biotechnology Bulletin, 2017, 33(8): 34-39. |
| [13] | CHEN Chun-xu, LI Qi, GUO Yuan-xin, DU Chuan-lai, DING Zhi-gang. Transcriptome Analysis of Germinated Tartary Buckwheat Based on High-throughput Sequencing Technology [J]. Biotechnology Bulletin, 2016, 32(7): 40-47. |
| [14] | AO Xu-dong SA Ru-la WANG Jie WANG Hui-min YU Hai-quan. Expression of AID and Dynamic Changes of Its DNA Methylation in Regulation Region During Bovine Early Embryonic Development [J]. Biotechnology Bulletin, 2016, 32(7): 242-249. |
| [15] | ZHAO Qian, WANG Wei ,SUN Ye-qing. Review on the Correlation between DNA Methylation and Gene Expression in Plant [J]. Biotechnology Bulletin, 2016, 32(4): 16-23. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||