Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 31-39.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1589
Previous Articles Next Articles
WANG Chen-chen1(), ZHANG Fan-li1, CHEN Pei-qi1, WENG Si-yao1, WANG Hui-fang1, CUI Xiao-juan1,2()
Received:
2021-12-23
Online:
2022-07-26
Published:
2022-08-09
Contact:
CUI Xiao-juan
E-mail:1770429433@qq.com;xjcui@hnust.edu.cn
WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3[J]. Biotechnology Bulletin, 2022, 38(7): 31-39.
Fig. 3 Dynamic regulation of DNA methylation DNA methylation is established and maintained by DNMTs in mammalian. There are two pathways for DNA demethylation:1)passive dilution,i.e.,DNA replication or loss of enzymes participating in the dynamic regulation of DNA methylation may be involved in DNA demethylation;2)active demethylation,i.e.,TETs are involved in active DNA demethylation,which are successively oxidize 5mC to 5hmC,5fC and 5caC. Under the action of thymine DNA Glycosylase(TDG),5fC and 5caC participate in the base excision repair(BER)pathway,converted to unmodified cytosine eventually
[1] |
Sasaki K, Hara S, Yamakami R, et al. Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice[J]. Mol Reprod Dev, 2019, 86(6):614-623.
doi: 10.1002/mrd.23137 URL |
[2] |
von Meyenn F, Iurlaro M, Habibi E, et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells[J]. Mol Cell, 2016, 62(6):983.
doi: 10.1016/j.molcel.2016.06.005 URL |
[3] |
Ren WD, Gao LF, Song JK. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation[J]. Genes, 2018, 9(12):620.
doi: 10.3390/genes9120620 URL |
[4] |
Spaziano A, Cantone DI. X-chromosome reactivation:a concise review[J]. Biochem Soc Trans, 2021, 49(6):2797-2805.
doi: 10.1042/BST20210777 URL |
[5] |
Baubec T, Colombo DF, Wirbelauer C, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation[J]. Nature, 2015, 520(7546):243-247.
doi: 10.1038/nature14176 URL |
[6] |
Wang CC, Abu-Amer Y, O’Keefe RJ, et al. Loss of Dnmt3b in chondrocytes leads to delayed endochondral ossification and fracture repair[J]. J Bone Miner Res, 2018, 33(2):283-297.
doi: 10.1002/jbmr.3305 URL |
[7] |
Guan ZY, Zhang J, Song SH, et al. Promoter methylation and expression of TIMP3 gene in gastric cancer[J]. Diagn Pathol, 2013, 8:110.
doi: 10.1186/1746-1596-8-110 URL |
[8] |
Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers[J]. Nat Med, 1995, 1(7):686-692.
pmid: 7585152 |
[9] |
Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers[J]. Cancer Res, 2006, 66(17):8462-9468.
pmid: 16951157 |
[10] |
Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases(DNMTs)in oocytes and early embryos[J]. Biochimie, 2015, 116:103-113.
doi: 10.1016/j.biochi.2015.06.019 URL |
[11] | Lyko F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2):81-92. |
[12] |
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm[J]. Nucleic Acids Res, 2016, 44(18):8556-8575.
pmid: 27521372 |
[13] |
Mohan KN, Ding F, Chaillet JR. Distinct roles of DMAP1 in mouse development[J]. Mol Cell Biol, 2011, 31(9):1861-1869.
doi: 10.1128/MCB.01390-10 pmid: 21383065 |
[14] |
Iida T, Suetake I, Tajima S, et al. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA[J]. Genes Cells, 2002, 7(10):997-1007.
doi: 10.1046/j.1365-2443.2002.00584.x URL |
[15] |
Guo X, Wang L, Li J, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A[J]. Nature, 2015, 517(7536):640-644.
doi: 10.1038/nature13899 URL |
[16] |
Zeng Y, Chen TP. DNA methylation reprogramming during mammalian development[J]. Genes, 2019, 10(4):257.
doi: 10.3390/genes10040257 URL |
[17] |
Chen ZY, Zhang Y. Role of mammalian DNA methyltransferases in development[J]. Annu Rev Biochem, 2020, 89:135-158.
doi: 10.1146/annurev-biochem-103019-102815 URL |
[18] |
Takeshita K, Suetake I, Yamashita E, et al. Structural insight into maintenance methylation by mouse DNA methyltransferase 1(Dnmt1)[J]. Proc Natl Acad Sci USA, 2011, 108(22):9055-9059.
doi: 10.1073/pnas.1019629108 URL |
[19] |
Yarychkivska O, Shahabuddin Z, Comfort N, et al. BAH domains and a histone-like motif in DNA methyltransferase 1(DNMT1)regulate de novo and maintenance methylation in vivo[J]. J Biol Chem, 2018, 293(50):19466-19475.
doi: 10.1074/jbc.RA118.004612 pmid: 30341171 |
[20] | Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation[J]. Biochim Biophys Acta, 2014, 1839(12):1362-1372. |
[21] |
Song JK, Rechkoblit O, Bestor TH, et al. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation[J]. Science, 2011, 331(6020):1036-1040.
doi: 10.1126/science.1195380 URL |
[22] |
Barau J, Teissandier A, Zamudio N, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity[J]. Science, 2016, 354(6314):909-912.
pmid: 27856912 |
[23] |
Ge YZ, Pu MT, Gowher H, et al. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain[J]. J Biol Chem, 2004, 279(24):25447-25454.
doi: 10.1074/jbc.M312296200 URL |
[24] |
Dhayalan A, Rajavelu A, Rathert P, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation[J]. J Biol Chem, 2010, 285(34):26114-26120.
doi: 10.1074/jbc.M109.089433 URL |
[25] |
Chen TP, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin[J]. Mol Cell Biol, 2004, 24(20):9048-9058.
doi: 10.1128/MCB.24.20.9048-9058.2004 URL |
[26] | Kibe K, Shirane K, Ohishi H, et al. The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes[J]. PLoS Genet, 2021, 17(5):e1009570. |
[27] |
Sendžikaitė G, Hanna CW, Stewart-Morgan KR, et al. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice[J]. Nat Commun, 2019, 10(1):1884.
doi: 10.1038/s41467-019-09713-w pmid: 31015495 |
[28] |
Otani J, Nankumo T, Arita K, et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain[J]. EMBO Rep, 2009, 10(11):1235-1241.
doi: 10.1038/embor.2009.218 URL |
[29] |
Zhang YY, Jurkowska R, Soeroes S, et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail[J]. Nucleic Acids Res, 2010, 38(13):4246-4253.
doi: 10.1093/nar/gkq147 URL |
[30] |
Li BZ, Huang Z, Cui QY, et al. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase[J]. Cell Res, 2011, 21(8):1172-1181.
doi: 10.1038/cr.2011.92 URL |
[31] |
Saravanaraman P, Selvam M, Ashok C, et al. De novo methyltransferases:potential players in diseases and new directions for targeted therapy[J]. Biochimie, 2020, 176:85-102.
doi: S0300-9084(20)30158-9 pmid: 32659446 |
[32] |
Gowher H, Jeltsch A. Mammalian DNA methyltransferases:new discoveries and open questions[J]. Biochem Soc Trans, 2018, 46(5):1191-1202.
doi: 10.1042/BST20170574 URL |
[33] |
Lukashevich OV, Cherepanova NA, Jurkovska RZ, et al. Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity[J]. BMC Biochem, 2016, 17:7.
doi: 10.1186/s12858-016-0064-y pmid: 27001594 |
[34] |
Fatemi M, Hermann A, Pradhan S, et al. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA[J]. J Mol Biol, 2001, 309(5):1189-1199.
pmid: 11399088 |
[35] |
Margot JB, Ehrenhofer-Murray AE, Leonhardt H. Interactions within the mammalian DNA methyltransferase family[J]. BMC Mol Biol, 2003, 4:7.
pmid: 12777184 |
[36] |
Xu TH, Liu MM, Zhou XE, et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B[J]. Nature, 2020, 586(7827):151-155.
doi: 10.1038/s41586-020-2747-1 URL |
[37] |
Yarychkivska O, Tavana O, Gu W, et al. Independent functions of DNMT1 and USP7 at replication foci[J]. Epigenetics Chromatin, 2018, 11(1):9.
doi: 10.1186/s13072-018-0179-z pmid: 29482658 |
[38] |
Bronner C, Alhosin M, Hamiche A, et al. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns[J]. Genes, 2019, 10(1):65.
doi: 10.3390/genes10010065 URL |
[39] |
Ren WD, Fan HT, Grimm SA, et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation[J]. Nat Commun, 2021, 12(1):2490.
doi: 10.1038/s41467-021-22665-4 URL |
[40] |
Kent B, Magnani E, Walsh MJ, et al. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development[J]. Dev Biol, 2016, 412(1):99-113.
doi: 10.1016/j.ydbio.2016.01.036 URL |
[41] |
Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3):247-257.
doi: 10.1016/s0092-8674(00)81656-6 pmid: 10555141 |
[42] |
Gujar H, Weisenberger DJ, Liang GN. The roles of human DNA methyltransferases and their isoforms in shaping the epigenome[J]. Genes, 2019, 10(2):172.
doi: 10.3390/genes10020172 URL |
[43] |
Wu H, Zhang Y. Reversing DNA methylation:mechanisms, genomics, and biological functions[J]. Cell, 2014, 156(1/2):45-68.
doi: 10.1016/j.cell.2013.12.019 URL |
[44] |
Shi JJ, Xu JF, Chen YE, et al. The concurrence of DNA methylation and demethylation is associated with transcription regulation[J]. Nat Commun, 2021, 12(1):5285.
doi: 10.1038/s41467-021-25521-7 URL |
[45] |
He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA[J]. Science, 2011, 333(6047):1303-1307.
doi: 10.1126/science.1210944 URL |
[46] |
Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine:potential implications for active demethylation of CpG sites[J]. J Biol Chem, 2011, 286(41):35334-35338.
doi: 10.1074/jbc.C111.284620 URL |
[47] |
Zhang L, Lu XY, Lu JY, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA[J]. Nat Chem Biol, 2012, 8(4):328-330.
doi: 10.1038/nchembio.914 URL |
[48] |
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis[J]. Biomark Res, 2017, 5:1.
doi: 10.1186/s40364-017-0081-z pmid: 28127428 |
[49] |
Cui D, Xu XR. DNA methyltransferases, DNA methylation, and age-associated cognitive function[J]. Int J Mol Sci, 2018, 19(5):1315.
doi: 10.3390/ijms19051315 URL |
[50] |
Song N, Endo D, Song B, et al. 5-aza-2’-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases[J]. Toxicology, 2016, 361/362:62-72.
doi: 10.1016/j.tox.2016.07.005 URL |
[51] |
Song HP, Chen LJ, Liu W, et al. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTENgene promoter methylation[J]. Cell Death Dis, 2021, 12(5):440.
doi: 10.1038/s41419-021-03637-4 URL |
[52] |
Yu J, Qin B, Moyer AM, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine[J]. J Clin Invest, 2018, 128(6):2376-2388.
doi: 10.1172/JCI97924 URL |
[53] |
Singh RK, Mallela RK, Hayes A, et al. Dnmt1, Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian Retina[J]. Exp Eye Res, 2017, 159:132-146.
doi: 10.1016/j.exer.2016.11.014 URL |
[54] |
Smith AM, LaValle TA, Shinawi M, et al. Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome[J]. Nat Commun, 2021, 12(1):4549.
doi: 10.1038/s41467-021-24800-7 URL |
[55] |
Venney D, Mohd-Sarip A, Mills KI. The impact of epigenetic modifications in myeloid malignancies[J]. Int J Mol Sci, 2021, 22(9):5013.
doi: 10.3390/ijms22095013 URL |
[56] |
Villalba-Benito L, Torroglosa A, Fernández RM, et al. Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease[J]. Sci Rep, 2017, 7(1):6221.
doi: 10.1038/s41598-017-06539-8 pmid: 28740121 |
[57] | Hagihara Y, Asada S, Maeda T, et al. Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells[J]. PLoS Genet, 2021, 17(6):e1009646. |
[58] |
Nowialis P, Lopusna K, Opavska J, et al. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions[J]. Nat Commun, 2019, 10(1):4374.
doi: 10.1038/s41467-019-12355-7 pmid: 31558711 |
[59] |
Lei H, Oh SP, Okano M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells[J]. Development, 1996, 122(10):3195-3205.
doi: 10.1242/dev.122.10.3195 pmid: 8898232 |
[60] |
Liao J, Karnik R, Gu HC, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells[J]. Nat Genet, 2015, 47(5):469-478.
doi: 10.1038/ng.3258 |
[61] |
Hirasawa R, Chiba H, Kaneda M, et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development[J]. Genes Dev, 2008, 22(12):1607-1616.
doi: 10.1101/gad.1667008 URL |
[62] |
Ding F, Chaillet JR. In vivo stabilization of the Dnmt1(cytosine-5)- methyltransferase protein[J]. Proc Natl Acad Sci USA, 2002, 99(23):14861-14866.
doi: 10.1073/pnas.232565599 URL |
[63] | Dan JM, Chen TP. Genetic studies on mammalian DNA methyltransferases[J]. Adv Exp Med Biol, 2016, 945:123-150. |
[64] |
Lyon MF. Gene action in the X-chromosome of the mouse(Mus musculus L. )[J]. Nature, 1961, 190:372-373.
doi: 10.1038/190372a0 URL |
[65] | Dossin F, Heard E. The molecular and nuclear dynamics of X-chromosome inactivation[J]. Cold Spring Harb Perspect Biol, 2021:2021 Jul 26;a040196. |
[66] |
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos[J]. Genes Dev, 2014, 28(8):812-828.
doi: 10.1101/gad.234294.113 URL |
[67] |
Haggerty C, Kretzmer H, Riemenschneider C, et al. Dnmt1 has de novo activity targeted to transposable elements[J]. Nat Struct Mol Biol, 2021, 28(7):594-603.
doi: 10.1038/s41594-021-00603-8 pmid: 34140676 |
[68] |
Li YF, Zhang ZQ, Chen JY, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J]. Nature, 2018, 564(7734):136-140.
doi: 10.1038/s41586-018-0751-5 URL |
[69] |
Han LS, Ren C, Zhang J, et al. Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development[J]. Cell Discov, 2019, 5:9.
doi: 10.1038/s41421-019-0081-2 URL |
[70] |
Tse JWT, Jenkins LJ, Chionh F, et al. Aberrant DNA methylation in colorectal cancer:what should we target?[J]. Trends Cancer, 2017, 3(10):698-712.
doi: 10.1016/j.trecan.2017.08.003 URL |
[71] |
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts[J]. Nature, 1983, 301(5895):89-92.
doi: 10.1038/301089a0 URL |
[72] |
Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science, 2003, 300(5618):489-492.
doi: 10.1126/science.1083558 URL |
[73] |
Pathania R, Ramachandran S, Elangovan S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis[J]. Nat Commun, 2015, 6:6910.
doi: 10.1038/ncomms7910 URL |
[74] |
Catteau A, Harris WH, Xu CF, et al. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer:correlation with disease characteristics[J]. Oncogene, 1999, 18(11):1957-1965.
doi: 10.1038/sj.onc.1202509 pmid: 10208417 |
[75] |
Sun WL, Ma G, Zhang L, et al. DNMT3A-mediated silence in ADAMTS9 expression is restored by RNF180 to inhibit viability and motility in gastric cancer cells[J]. Cell Death Dis, 2021, 12(5):428.
doi: 10.1038/s41419-021-03628-5 URL |
[76] |
Wong CC, Kang W, Xu JY, et al. Prostaglandin E 2 induces DNA hypermethylation in gastric cancer in vitro and in vivo[J]. Theranostics, 2019, 9(21):6256-6268.
doi: 10.7150/thno.35766 URL |
[77] |
Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma[J]. Cancer Lett, 2006, 233(2):271-278.
doi: 10.1016/j.canlet.2005.03.017 URL |
[78] |
Lin XX, Lian GH, Peng SF, et al. Reversing epigenetic alterations caused by alcohol:a promising therapeutic direction for alcoholic liver disease[J]. Alcohol Clin Exp Res, 2018, 42(10):1863-1873.
doi: 10.1111/acer.13863 URL |
[79] |
Lomberk GA, Iovanna J, Urrutia R. The promise of epigenomic therapeutics in pancreatic cancer[J]. Epigenomics, 2016, 8(6):831-842.
doi: 10.2217/epi-2015-0016 pmid: 27337224 |
[80] |
Shrivastava S, Ray RM, Holguin L, et al. Exosome-mediated stable epigenetic repression of HIV-1[J]. Nat Commun, 2021, 12(1):5541.
doi: 10.1038/s41467-021-25839-2 pmid: 34545097 |
[81] |
Shi JN, Song SP, Li SX, et al. TNF-α/NF-κB signaling epigenetically represses PSD4 transcription to promote alcohol-related hepatocellular carcinoma progression[J]. Cancer Med, 2021, 10(10):3346-3357.
doi: 10.1002/cam4.3832 URL |
[82] |
Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation[J]. Neuron, 2007, 53(6):857-869.
doi: 10.1016/j.neuron.2007.02.022 URL |
[83] |
Zhang HQ, Wang JY, Li ZF, et al. DNA methyltransferase 1 is dysregulated in Parkinson’s disease via mediation of miR-17[J]. Mol Neurobiol, 2021, 58(6):2620-2633.
doi: 10.1007/s12035-021-02298-w URL |
[84] |
Morris MJ, Adachi M, Na ES, et al. Selective role for DNMT3a in learning and memory[J]. Neurobiol Learn Mem, 2014, 115:30-37.
doi: 10.1016/j.nlm.2014.06.005 URL |
[85] |
Yu NW, Liu J, Yi G, et al. DNA methylation is necessary for erythropoietin to improve spatial learning and memory in SAMP8 mice[J]. Exp Gerontol, 2015, 69:111-115.
doi: 10.1016/j.exger.2015.06.009 URL |
[86] | Córdova-Palomera A, Fatjó-Vilas M, Kebir O, et al. Polymorphic variation in the epigenetic gene DNMT3B modulates the environmental impact on cognitive ability:a twin study[J]. Eur Psychiatry, 2015, 30(2):303-308. |
[87] |
Gong ZT, Zhou Q. Dnmt3a in the dorsal dentate gyrus is a key regulator of fear renewal[J]. Sci Rep, 2018, 8(1):5093.
doi: 10.1038/s41598-018-23533-w URL |
[88] | Park YJ, Lee S, Lim S, et al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics[J]. Proc Natl Acad Sci USA, 2021, 118(11):e2021073118. |
[89] |
Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density[J]. Cell Metab, 2009, 10(3):189-198.
doi: 10.1016/j.cmet.2009.07.011 URL |
[90] |
Kim AY, Park YJ, Pan XB, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance[J]. Nat Commun, 2015, 6:7585.
doi: 10.1038/ncomms8585 URL |
[91] |
Zhang Q, Yin SS, Liu L, et al. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice[J]. Sci Rep, 2016, 6:34597.
doi: 10.1038/srep34597 pmid: 27703201 |
[92] |
Zhang Q, Liu L, Lin WJ, et al. Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease[J]. Kidney Int, 2017, 91(1):144-156.
doi: S0085-2538(16)30426-4 pmid: 27692562 |
[93] |
Yin SS, Zhang Q, Yang J, et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(7):1207-1216.
doi: 10.1016/j.bbamcr.2017.03.002 URL |
[94] |
Zhu XB, Chen F, Lu K, et al. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice[J]. Ann Rheum Dis, 2019, 78(10):1420-1429.
doi: 10.1136/annrheumdis-2018-214940 URL |
[1] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[2] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[3] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[4] | WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction [J]. Biotechnology Bulletin, 2021, 37(8): 253-262. |
[5] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[6] | LIU Zhi-min, YANG Zhi-yi, JI Feng-dan, MEI Zhi-chao, YU Jia-hui, XIE Li-nan. Research Progress of Plant DNA Methylation Under Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(11): 122-132. |
[7] | LIU Jun, JIN Yu, WU Yao-song, LIU Yan, WANG Wen-bin, REN Shan-shan, DIAO Song-feng, CHEN Yu-long. Advances on the Structural Characteristics and Function of Dof Gene in Plant [J]. Biotechnology Bulletin, 2020, 36(10): 180-190. |
[8] | JIANG Rui, LÜ Ke-nao, PAN Xue-feng, CUI Xin-xia, SHEN Shi-gang, DING Liang. Current Status and Challenges of Epigenetic Drug Research and Development [J]. Biotechnology Bulletin, 2019, 35(8): 213-225. |
[9] | HUANG Xing, DING Feng, PENG Hong-xiang, PAN Jie-chun, HE Xin-hua, XU Jiong-zhi, LI Lin. Research Progress on Family of Plant WRKY Transcription Factors [J]. Biotechnology Bulletin, 2019, 35(12): 129-143. |
[10] | XUE Jing-jing, CHEN Song-bi. Variation Analysis of DNA Methylation in Different Development Stages of Cassava [J]. Biotechnology Bulletin, 2018, 34(5): 117-123. |
[11] | GONG Rui, SUN Kai, XIE Dao-yue. Applications of Fungal Laccase in Green Chemistry [J]. Biotechnology Bulletin, 2018, 34(4): 24-34. |
[12] | LI Lu-lu, QU Chang-feng, ZHENG Zhou, WANG Yi-bin, MIAO Jin-lai, ZHANG Li. Study Advances on the Algal Aquaporins [J]. Biotechnology Bulletin, 2017, 33(8): 1-6. |
[13] | AO Xu-dong SA Ru-la WANG Jie WANG Hui-min YU Hai-quan. Expression of AID and Dynamic Changes of Its DNA Methylation in Regulation Region During Bovine Early Embryonic Development [J]. Biotechnology Bulletin, 2016, 32(7): 242-249. |
[14] | ZHAO Qian, WANG Wei ,SUN Ye-qing. Review on the Correlation between DNA Methylation and Gene Expression in Plant [J]. Biotechnology Bulletin, 2016, 32(4): 16-23. |
[15] | YANG Wei,PAN Yu,SU Cheng-gang,ZHANG Xing-guo,LI Jin-hua. Analysis of the DNA Methylation of SlGLD1 Regulated by JMJ524 in Tomato [J]. Biotechnology Bulletin, 2016, 32(12): 79-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||