Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 355-366.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1180
AN Miao-miao(
), LIN Xiang-hao, LIANG Rui-na, ZHAO Guo-zhu(
)
Received:2024-12-05
Online:2025-06-26
Published:2025-06-30
Contact:
ZHAO Guo-zhu
E-mail:anmiao315418@163.com;zhaogz@bjfu.edu.cn
AN Miao-miao, LIN Xiang-hao, LIANG Rui-na, ZHAO Guo-zhu. Effect of Carbon Source in Methanogenic Communities Regulation and Methane Production Capacity[J]. Biotechnology Bulletin, 2025, 41(6): 355-366.
富集代数 Enrichment algebra | 接种FW(代号1) Inoculated FW (code 1) | 接种SS(代号2) Inoculated SS (code 2) | ||||
|---|---|---|---|---|---|---|
碳源A Carbon source A | 碳源B Carbon source B | 碳源C Carbon source C | 碳源A Carbon source A | 碳源B Carbon source B | 碳源C Carbon source C | |
第一代(代号-1) First generation (code-1) | 1A-1 | 1B-1 | 1C-1 | 2A-1 | 2B-1 | 2C-1 |
第二代(代号-2) Second generation (code-2) | 1A-2 | 1B-2 | 1C-2 | 2A-2 | 2B-2 | 2C-2 |
第三代(代号-3) Third generation (code-3) | 1A-3 | 1B-3 | 1C-3 | 2A-3 | 2B-3 | 2C-3 |
Table 1 Identification numbers of methanogenic microbial community enrichment cultures
富集代数 Enrichment algebra | 接种FW(代号1) Inoculated FW (code 1) | 接种SS(代号2) Inoculated SS (code 2) | ||||
|---|---|---|---|---|---|---|
碳源A Carbon source A | 碳源B Carbon source B | 碳源C Carbon source C | 碳源A Carbon source A | 碳源B Carbon source B | 碳源C Carbon source C | |
第一代(代号-1) First generation (code-1) | 1A-1 | 1B-1 | 1C-1 | 2A-1 | 2B-1 | 2C-1 |
第二代(代号-2) Second generation (code-2) | 1A-2 | 1B-2 | 1C-2 | 2A-2 | 2B-2 | 2C-2 |
第三代(代号-3) Third generation (code-3) | 1A-3 | 1B-3 | 1C-3 | 2A-3 | 2B-3 | 2C-3 |
Fig. 2 Cumulative methane yields by enriched methanogenic microbial communitymL/(g∙L-1 C): The methane yield (mL) per gram of available carbon (C) in a unit volume (mL) of culture medium
Fig. 4 Quantitative analysis of mcrA gene in enriched methanogenic microbial communityA: Positive clone screening of recombinant plasmid. B: Standard curve of fluorescence quantitative PCR based on mcrA gene. C: Copy number of mcrA gene in the second generation of methanogenic microbial community enrichment cultures, i.e., copies/(g∙L-1 C). copies/(g∙L-1 C): The copy number of mcrA gene per gram of available carbon (C) in a unit volume (L) of culture medium
| 稀释倍数 Dilution ratio | 拷贝数 Copy number | Ct值(mean ± SD) Cycle threshold | 变异系数 Coefficient of variation (%) |
|---|---|---|---|
| 1.00×10-7 | 6.53×103 | 31.70 ± 0.70 | 2.21 |
| 1.00×10-6 | 6.53×104 | 27.65 ± 0.29 | 1.05 |
| 1.00×10-5 | 6.53×105 | 23.24 ± 0.66 | 2.84 |
| 1.00×10-4 | 6.53×106 | 17.96 ± 0.25 | 1.40 |
| 1.00×10-3 | 6.53×107 | 13.92 ± 0.19 | 1.36 |
| 1.00×10-2 | 6.53×108 | 10.78 ± 0.26 | 2.39 |
| 1.00×10-1 | 6.53×109 | 6.00 ± 0.00 | 0.00 |
Table 2 Real-time PCR detection precision of standard plasmids at different dilution ratios
| 稀释倍数 Dilution ratio | 拷贝数 Copy number | Ct值(mean ± SD) Cycle threshold | 变异系数 Coefficient of variation (%) |
|---|---|---|---|
| 1.00×10-7 | 6.53×103 | 31.70 ± 0.70 | 2.21 |
| 1.00×10-6 | 6.53×104 | 27.65 ± 0.29 | 1.05 |
| 1.00×10-5 | 6.53×105 | 23.24 ± 0.66 | 2.84 |
| 1.00×10-4 | 6.53×106 | 17.96 ± 0.25 | 1.40 |
| 1.00×10-3 | 6.53×107 | 13.92 ± 0.19 | 1.36 |
| 1.00×10-2 | 6.53×108 | 10.78 ± 0.26 | 2.39 |
| 1.00×10-1 | 6.53×109 | 6.00 ± 0.00 | 0.00 |
| Category | Sample | Observed_species | Shannon | Simpson | Pielou | Chao1 | ACE | Goods_coverage |
|---|---|---|---|---|---|---|---|---|
产甲烷菌 Methanogens | 1A-2 | 219 | 4.303 | 0.911 | 0.553 | 291.163 | 315.584 | 0.999 |
| 1B-2 | 204 | 3.631 | 0.844 | 0.483 | 231.841 | 254.647 | 0.999 | |
| 1C-2 | 235 | 3.709 | 0.794 | 0.461 | 290.724 | 304.491 | 0.999 | |
细菌 Bacteria | 1A-2 | 1 644 | 6.622 | 0.905 | 0.620 | 1 646.686 | 1 664.078 | 0.999 |
| 1B-2 | 1 010 | 4.234 | 0.731 | 0.424 | 1 028.896 | 1 062.259 | 0.997 | |
| 1C-2 | 975 | 5.925 | 0.944 | 0.597 | 1 046.697 | 1 079.658 | 0.995 |
Table 3 Alpha diversity indexes of methanogenic archaea and bacteria in microbial community enriched by different carbon sources
| Category | Sample | Observed_species | Shannon | Simpson | Pielou | Chao1 | ACE | Goods_coverage |
|---|---|---|---|---|---|---|---|---|
产甲烷菌 Methanogens | 1A-2 | 219 | 4.303 | 0.911 | 0.553 | 291.163 | 315.584 | 0.999 |
| 1B-2 | 204 | 3.631 | 0.844 | 0.483 | 231.841 | 254.647 | 0.999 | |
| 1C-2 | 235 | 3.709 | 0.794 | 0.461 | 290.724 | 304.491 | 0.999 | |
细菌 Bacteria | 1A-2 | 1 644 | 6.622 | 0.905 | 0.620 | 1 646.686 | 1 664.078 | 0.999 |
| 1B-2 | 1 010 | 4.234 | 0.731 | 0.424 | 1 028.896 | 1 062.259 | 0.997 | |
| 1C-2 | 975 | 5.925 | 0.944 | 0.597 | 1 046.697 | 1 079.658 | 0.995 |
Fig. 6 Species composition of methanogenic archaea and bacteria in microbial community enriched by different carbon sourcesPrincipal coordinate analysis (PCoA) of the methanogenic archaeal community (A) and bacterial community (B) based on Bray-Curtis dissimilarity. C: Distribution of methanogenic archaeal communities at the genus level. D: Distribution of bacterial communities at the phylum level. E: Cladogram describing the taxonomic community composition and relative abundances of bacteria at the level of the top 100 genera
产甲烷菌营养类型 Methanogens trophic types | 产甲烷菌 Methanogens | 相对丰度 Relative abundance | ||
|---|---|---|---|---|
| 1A-2 | 1B-2 | 1C-2 | ||
| 乙酸营养型 Aceticlastic type | Methanothrix | 0.358 | 0.448 | 0.141 |
| 占比 Proportion (%) | 35.8 | 44.8 | 14.1 | |
| 氢营养型 Hydrogenotrophic type | Methanoculleus | 0.108 | 0.296 | 0.282 |
| Methanobacterium | 0.006 | 0.081 | 0.223 | |
| Methanobrevibacter | 0 | 0 | 0.197 | |
| Methanospirillum | 0.033 | 0.063 | 0.041 | |
| Candidatus Methanogranum | 0.023 | 0 | 0 | |
| Methanothermobacter | 0 | 0 | 0.009 | |
| 占比 Proportion (%) | 17.0 | 44.0 | 75.1 | |
| 甲基营养型 Methylotrophic type | Candidatus Methanoplasma | 0.107 | 0.016 | 0.066 |
| Methanomethylovorans | 0.171 | 0.010 | 0.003 | |
| Methanomethylophilus | 0.012 | 0.003 | 0.001 | |
| Methanomassiliicoccus | 0.001 | 0 | 0 | |
| 占比 Proportion (%) | 29.2 | 2.9 | 7.0 | |
| 多营养型 Multitrophic types | Methanosarcina | 0.082 | 0 | 0 |
| 占比 Proportion (%) | 8.2 | 0 | 0 | |
Table 4 Relative abundances and trophic type proportions of methanogenic archaea in microbial community enriched by different carbon sources
产甲烷菌营养类型 Methanogens trophic types | 产甲烷菌 Methanogens | 相对丰度 Relative abundance | ||
|---|---|---|---|---|
| 1A-2 | 1B-2 | 1C-2 | ||
| 乙酸营养型 Aceticlastic type | Methanothrix | 0.358 | 0.448 | 0.141 |
| 占比 Proportion (%) | 35.8 | 44.8 | 14.1 | |
| 氢营养型 Hydrogenotrophic type | Methanoculleus | 0.108 | 0.296 | 0.282 |
| Methanobacterium | 0.006 | 0.081 | 0.223 | |
| Methanobrevibacter | 0 | 0 | 0.197 | |
| Methanospirillum | 0.033 | 0.063 | 0.041 | |
| Candidatus Methanogranum | 0.023 | 0 | 0 | |
| Methanothermobacter | 0 | 0 | 0.009 | |
| 占比 Proportion (%) | 17.0 | 44.0 | 75.1 | |
| 甲基营养型 Methylotrophic type | Candidatus Methanoplasma | 0.107 | 0.016 | 0.066 |
| Methanomethylovorans | 0.171 | 0.010 | 0.003 | |
| Methanomethylophilus | 0.012 | 0.003 | 0.001 | |
| Methanomassiliicoccus | 0.001 | 0 | 0 | |
| 占比 Proportion (%) | 29.2 | 2.9 | 7.0 | |
| 多营养型 Multitrophic types | Methanosarcina | 0.082 | 0 | 0 |
| 占比 Proportion (%) | 8.2 | 0 | 0 | |
| 1 | 杨兴盛, 王尚, 何晴, 等. 典型有机固废厌氧消化微生物研究现状与发展方向 [J]. 生物工程学报, 2021, 37(10): 3425-3438. |
| Yang XS, Wang S, He Q, et al. Microorganisms in the typical anaerobic digestion system of organic solid wastes: a review [J]. Chin J Biotechnol, 2021, 37(10): 3425-3438. | |
| 2 | 李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展 [J]. 海洋环境科学, 2020, 39(3): 488-496. |
| Li SQ, Zang KP, Song L. Review on methanogens and methanotrophs metabolised by methane in wetland [J]. Mar Environ Sci, 2020, 39(3): 488-496. | |
| 3 | Mayumi D, Mochimaru H, Tamaki H, et al. Methane production from coal by a single methanogen [J]. Science, 2016, 354(6309): 222-225. |
| 4 | Zhou Z, Zhang CJ, Liu PF, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species [J]. Nature, 2022, 601(7892): 257-262. |
| 5 | 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展 [J]. 应用与环境生物学报, 2015, 21(1): 1-9. |
| Fang XY, Li JB, Rui JP, et al. Research progress in biochemical pathways of methanogenesis [J]. Chin J Appl Environ Biol, 2015, 21(1): 1-9. | |
| 6 | 易悦, 周卓, 黄艳, 等. 我国产甲烷古菌研究进展与展望 [J]. 微生物学报, 2023, 63(5): 1796-1814. |
| Yi Y, Zhou Z, Huang Y, et al. Methanogen research in China: current status and prospective [J]. Acta Microbiol Sin, 2023, 63(5): 1796-1814. | |
| 7 | 程国玲, 李巧燕, 李永峰. 产甲烷菌细菌学原理与应用 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2013. |
| Cheng GL, Li QY, Li YF. Bacteriological principle and application of methanogenic bacteria [M]. Harbin: Harbin Institute of Technology Press, 2013. | |
| 8 | 刘春, 李亮, 马俊科, 等. 基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析 [J]. 环境科学, 2011, 32(4): 1114-1119. |
| 42 | Ma SC, Peng CH, Deng Y, et al. Recent developments in Phylum Thermotoga [J]. China Biogas, 2022, 40(5): 3-17. |
| 43 | Ritalahti KM, Justicia-Leon SD, Cusick KD, et al. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes [J]. Int J Syst Evol Microbiol, 2012, 62(1): 210-216. |
| 44 | Shao MS, Zhang C, Wang X, et al. Co-digestion of food waste and hydrothermal liquid digestate: Promotion effect of self-generated hydrochars [J]. Environ Sci Ecotechnol, 2023, 15: 100239. |
| 45 | An MM, Shen L, Liang RN, et al. Microbial diagnostics unveil key driver bacteria and methanogens associated with system stability and biogas production in food waste anaerobic digestion systems [J]. J Environ Chem Eng, 2024, 12(6): 114435. |
| 8 | Liu C, Li L, Ma JK, et al. Analysis of methanogenic community of anaerobic granular sludge based on mcrA gene [J]. Environ Sci, 2011, 32(4): 1114-1119. |
| 9 | Kundu K, Bergmann I, Hahnke S, et al. Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor [J]. J Biotechnol, 2013, 168(4): 616-624. |
| 10 | Chen Z, Khan A, Zhang W, et al. Metabolic pathway analysis of methane from methanol as substrate in microbial consortium [J]. Bioresour Technol, 2024, 413: 131517. |
| 11 | Kouzuma A, Tsutsumi M, Ishii S, et al. Non-autotrophic methanogens dominate in anaerobic digesters [J]. Sci Rep, 2017, 7(1): 1510. |
| 12 | 刘璐, 刘星, 靖宪月, 等. 地杆菌: 驱动厌氧生物地球化学循环的“多面手” [J]. 微生物学报, 2022, 62(6): 2277-2288. |
| Liu L, Liu X, Jing XY, et al. Geoabcter: the "generalist" driving anaerobic biogeochemical cycles [J]. Acta Microbiol Sin, 2022, 62(6): 2277-2288. | |
| 13 | 马佳麟. 碳源与氨氮对厌氧菌群的影响及其产甲烷机制研究 [D]. 济南: 山东建筑大学, 2021. |
| Ma JL. Effects of carbon source and ammonia nitrogen on anaerobic bacteria and its methane production mechanism [D]. Jinan: Shandong Jianzhu University, 2021. | |
| 14 | DSMZ. DSMZ 120 Methanosarcina medium[EB/OL]. [2022-01-12]. . |
| 15 | DSMZ. DSMZ 334 Methanothrix medium[EB/OL]. [2022-09-21]. . |
| 16 | DSMZ. DSMZ 119 Methanobacterium medium[EB/OL]. [2022-09-15]. . |
| 17 | 李莹. 滨海河流沉积物中产甲烷分离物的获得及其电化学特征 [D]. 北京: 中国科学院大学, 2016. |
| Li Y. Acquisition and electrochemical characteristics of methane-producing isolates from coastal river sediments [D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
| 18 | DSMZ. DSMZ 320 Clostridium cellulovorans medium[EB/OL]. [2022-03-31]. . |
| 19 | Wang PX, Yang YD, Wang XQ, et al. Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies [J]. Environ Sci Pollut Res Int, 2020, 27(8): 8016-8027. |
| 20 | 陈悦, 罗明没, 李尚磷, 等. 基于荧光定量PCR技术分析滇池沉积物产甲烷菌空间分布特征 [J]. 云南农业大学学报: 自然科学, 2021, 36(1): 132-139. |
| Chen Y, Luo MM, Li SL, et al. The spatial distribution characteristics of methanogens in the sediments of Dianchi Lake by fluorescence quantitative PCR [J]. J Yunnan Agric Univ Nat Sci, 2021, 36(1): 132-139. | |
| 21 | Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing [J]. Nat Methods, 2013, 10(1): 57-59. |
| 22 | Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of Chimera detection [J]. Bioinformatics, 2011, 27(16): 2194-2200. |
| 23 | Qiu LP, Zhang Q, Zhu HS, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality [J]. ISME J, 2021, 15(8): 2474-2489. |
| 24 | Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation [J]. Nucleic Acids Res, 2021, 49(W1): W293-W296. |
| 25 | Okonechnikov K, Golosova O, Fursov M, et al. Unipro UGENE: a unified bioinformatics toolkit [J]. Bioinformatics, 2012, 28(8): 1166-1167. |
| 26 | Wang P, Wang HT, Qiu YQ, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production-a review [J]. Bioresour Technol, 2018, 248(Pt A): 29-36. |
| 27 | Dong N, Zeng ZH, Russenberger M, et al. Investigating cake layer development and functional genes in formate- and acetate-driven heterotrophic denitrifying AnMBRs [J]. Chem Eng J, 2024, 485: 149623. |
| 28 | Guan RL, Yuan HR, Zhang L, et al. Combined pretreatment using CaO and liquid fraction of digestate of rice straw: Anaerobic digestion performance and electron transfer [J]. Chin J Chem Eng, 2021, 36: 223-232. |
| 29 | Wang SW, Ma F, Ma WW, et al. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system [J]. Water, 2019, 11(1): 133. |
| 30 | Chen H, Yuan JC, Xu QF, et al. Swine wastewater treatment using combined up-flow anaerobic sludge blanket and anaerobic membrane bioreactor: Performance and microbial community diversity [J]. Bioresour Technol, 2023, 373: 128606. |
| 31 | Dyksma S, Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion [J]. Environ Microbiol Rep, 2019, 11(4): 558-570. |
| 32 | Zhang F, Zhang W, Qian DK, et al. Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens [J]. Water Res, 2019, 163: 114892. |
| 33 | Choi YJ, Ryu JW, et al. Effect of inoculum and carbon sources difference on characteristics of anaerobic digestion [J]. J Korea Soc Waste Manag, 2017, 34(5): 474-481. |
| 34 | Ni LF, Wu JP, Dang HY, et al. Stand age-related effects of mangrove on archaeal methanogenesis in sediments: Community assembly and co-occurrence patterns [J]. Sci Total Environ, 2024, 954: 176596. |
| 35 | Zhuang GC, Elling FJ, Nigro LM, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico [J]. Geochim Cosmochim Acta, 2016, 187: 1-20. |
| 36 | Ao ZP, Li Y, Li Y, et al. Facilitating direct interspecies electron transfer in anaerobic digestion via speeding up transmembrane transport of electrons and CO2 reduction in methanogens by Na+ adjustment [J]. Waste Manag, 2023, 170: 252-260. |
| 37 | Louca S, Polz MF, Mazel F, et al. Function and functional redundancy in microbial systems [J]. Nat Ecol Evol, 2018, 2(6): 936-943. |
| 38 | Wang MX, Chen XL, Fang Y, et al. The trade-off between individual metabolic specialization and versatility determines the metabolic efficiency of microbial communities [J]. Cell Syst, 2024, 15(1): 63-74.e5. |
| 39 | Zhang Y, Li CX, Yuan ZW, et al. Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion [J]. Chem Eng J, 2023, 452: 139137. |
| 40 | Mandra Harahap B, Ahring BK. Caproic acid production from short-chained carboxylic acids produced by arrested anaerobic digestion of green waste: Development and optimization of a mixed caproic acid producing culture [J]. Bioresour Technol, 2024, 414: 131573. |
| 41 | Dong WL, Zhou JJ, Zhang CJ, et al. Methylotrophic substrates stimulated higher methane production than competitive substrates in mangrove sediments [J]. Sci Total Environ, 2024, 951: 175677. |
| 42 | 马诗淳, 彭成慧, 邓宇, 等. 热袍菌门最新研究进展 [J]. 中国沼气, 2022, 40(5): 3-17. |
| [1] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
| [2] | SONG Hai-na, WU Xin-tong, YANG Lu-yu, GENG Xi-ning, ZHANG Hua-min, SONG Xiao-long. Selection and Validation of Reference Genes for RT-qPCR in Allium tuberosum Infected by Botrytis squamosa [J]. Biotechnology Bulletin, 2023, 39(3): 101-115. |
| [3] | XIANG Fen, LI Wei, LIU Hong-yan, YIN Xia, ZENG Ze-xuan, ZHOU Ling-yun. Influence of Nitrogen Fertilizer Reduction on the Structure of Bacterial Community in Tea Garden Soil [J]. Biotechnology Bulletin, 2021, 37(6): 49-57. |
| [4] | YUAN Yuan, HUANG Hai-chen, LI Lin, LIU Guo-hui, FU Jun-sheng, WU Xiao-ping. Effect of Lime on Preventing and Controlling Continuous Cropping Obstacle of Ganoderma lingzhi and Analysis of Its Microbial Community [J]. Biotechnology Bulletin, 2021, 37(4): 70-84. |
| [5] | ZHANG Ni, BAO Han, ZUO Di-zhao, CHEN Ke-long. Community Characteristics of Methanogens in Alpine Wetland Driven by Precipitation Changes [J]. Biotechnology Bulletin, 2021, 37(11): 276-284. |
| [6] | ZHANG Rui-zhu, JIANG Yu-chen, HUANG Jun, YAN Jie. Cloning and Expression Analysis of SRPP2 Gene in Taraxacum kok-saghyz Rodin [J]. Biotechnology Bulletin, 2020, 36(1): 9-14. |
| [7] | LU Shou-liang LI Liang-yuan GAO Lei SHEN Min WAN Peng-cheng SHI Guo-qing DAI Rong. The Expression of LEPRb mRNA in the Estrus Cycle of Different Sheep Strains [J]. Biotechnology Bulletin, 2017, 33(5): 139-144. |
| [8] | Song Yanmin, Shi Limin, Xu Yuancong, Xu Wentao, Huang Lan, Liang Zhihong,. Fast Detection of Freshness of Chilled Pork by Real-time Quantitative PCR [J]. Biotechnology Bulletin, 2015, 31(6): 87-92. |
| [9] | Shao Mingrui, Xu Kewei, Tang Yuping, Zhao Kebin, Fu Bo, Liu He. The Quantitative PCR Technology for Three Oil and Gas Indicating Bacteria and Its Preliminary Application in Oil and Gas Field Soils [J]. Biotechnology Bulletin, 2013, 0(4): 172-178. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||