Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (7): 272-280.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1201
Previous Articles Next Articles
LI Cheng-hua(
), DOU Fei-fei, REN Yu-zhao, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng(
)
Received:2024-12-12
Online:2025-07-26
Published:2025-07-22
Contact:
LI Qing-feng
E-mail:19995556402@163.com;liqingfeng2017@nxu.edu.cn
LI Cheng-hua, DOU Fei-fei, REN Yu-zhao, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Effect of Exogenous Salicylic Acid on Wheat Infested with Blumeria graminis f. sp. tritici and Its Transcriptome Analysis[J]. Biotechnology Bulletin, 2025, 41(7): 272-280.
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| ERF109 | TraesCS1A02G370700.1 | AGGGGCACGAGTACATGATC | AGCTTCATCAGGTCCTGCAG |
| T7H20-70 | TraesCS1D02G280200.2 | TGGACGCCAAGAAGAGGTC | CTTGCCACCAATCACCTCTG |
| CIGR2 | TraesCS2A02G189600.1 | ATCCACCCCTTCAGCAACAT | GAGGGGCTTGCTCTTCCAG |
| HSP70 | TraesCS4B02G205700.1 | TCGGCACCACATACTCCTG | CAGTCCACTTCTTCGATCTTGG |
| PP2C30 | TraesCS4B02G210100.1 | ATGTCAGAGATCCGCCGC | GTTGTCCGAGCTCTGCCG |
| TIFY6B | TraesCS5A02G204900.1 | GGAGTCAGCTTACTTTGGGG | CTAAAGCTGATGTTCCTGGGC |
| DUF4228 | TraesCS5D02G414000.1 | ACGGCGAGGGTGGTTCTC | GAGATGGCGGTTAGGTCGG |
| At4g15970 | TraesCS5D02G536500.1 | CAGCAGCAACATTAGCCCC | CACGTCCAACACATTCCTCA |
| tmem53 | TraesCS7B02G502200.1 | AAACTCTCCCACCACCACAG | CGCAGTCCTCCAAGAAGTTG |
| HERK1 | TraesCS7D02G338800.3 | CTCTACTCCCCTTTCCGCTG | TCACCTCCCCTCAGCTTTG |
| FLA17 | TraesCS2B02G263900.1 | TCCTCCTCTGCCTGGTACT | CCTTCCAACAACTTCCCGC |
| Actin | TACTCCCTCACAACAACCG | AACAAGAGTCACCTCCAAGA |
Table 1 Real-time fluorescence quantitative PCR Primers
| 基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
|---|---|---|---|
| ERF109 | TraesCS1A02G370700.1 | AGGGGCACGAGTACATGATC | AGCTTCATCAGGTCCTGCAG |
| T7H20-70 | TraesCS1D02G280200.2 | TGGACGCCAAGAAGAGGTC | CTTGCCACCAATCACCTCTG |
| CIGR2 | TraesCS2A02G189600.1 | ATCCACCCCTTCAGCAACAT | GAGGGGCTTGCTCTTCCAG |
| HSP70 | TraesCS4B02G205700.1 | TCGGCACCACATACTCCTG | CAGTCCACTTCTTCGATCTTGG |
| PP2C30 | TraesCS4B02G210100.1 | ATGTCAGAGATCCGCCGC | GTTGTCCGAGCTCTGCCG |
| TIFY6B | TraesCS5A02G204900.1 | GGAGTCAGCTTACTTTGGGG | CTAAAGCTGATGTTCCTGGGC |
| DUF4228 | TraesCS5D02G414000.1 | ACGGCGAGGGTGGTTCTC | GAGATGGCGGTTAGGTCGG |
| At4g15970 | TraesCS5D02G536500.1 | CAGCAGCAACATTAGCCCC | CACGTCCAACACATTCCTCA |
| tmem53 | TraesCS7B02G502200.1 | AAACTCTCCCACCACCACAG | CGCAGTCCTCCAAGAAGTTG |
| HERK1 | TraesCS7D02G338800.3 | CTCTACTCCCCTTTCCGCTG | TCACCTCCCCTCAGCTTTG |
| FLA17 | TraesCS2B02G263900.1 | TCCTCCTCTGCCTGGTACT | CCTTCCAACAACTTCCCGC |
| Actin | TACTCCCTCACAACAACCG | AACAAGAGTCACCTCCAAGA |
Fig. 6 Expressions of key hormone genes during inoculation of Bgt after induction by exogenous salicylic acidDifferent letters indicate significant difference at P<0.05 level
Fig. 7 Effect of exogenous salicylic acid on the growth state of Bgt under microscopeA: The normal growth state of Bgt. B: The growth state of Bgt after the application of exogenous salicylic acid
| [1] | Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense [J]. Plant J, 2021, 105(2): 489-504. |
| [2] | Pokotylo I, Hodges M, Kravets V, et al. A ménage à trois: salicylic acid, growth inhibition, and immunity [J]. Trends Plant Sci, 2022, 27(5): 460-471. |
| [3] | Yang J, Duan GH, Li CQ, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses [J]. Front Plant Sci, 2019, 10: 1349. |
| [4] | Zhao H, Yin CC, Ma B, et al. Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms [J]. J Integr Plant Biol, 2021, 63(1): 102-125. |
| [5] | Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance [J]. Front Plant Sci, 2013, 4: 30. |
| [6] | Ádám AL, Nagy ZÁ, Kátay G, et al. Signals of systemic immunity in plants: progress and open questions [J]. Int J Mol Sci, 2018, 19(4): 1146. |
| [7] | Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI) [J]. Mol Plant, 2015, 8(4): 521-539. |
| [8] | Lee HJ, Park YJ, Seo PJ, et al. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis [J]. Plant Cell, 2015, 27(12): 3425-3438. |
| [9] | Li L, Li M, Yu LP, et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity [J]. Cell Host Microbe, 2014, 15(3): 329-338. |
| [10] | Luo XM, Xu N, Huang JK, et al. A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling [J]. Plant Physiol, 2017, 174(4): 2501-2514. |
| [11] | Naveed ZA, Wei XY, Chen JJ, et al. The PTI to ETI continuum in Phytophthora-plant interactions [J]. Front Plant Sci, 2020, 11: 593905. |
| [12] | Takken FLW, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function [J]. Curr Opin Plant Biol, 2012, 15(4): 375-384. |
| [13] | Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease [J]. Annu Rev Phytopathol, 2009, 47: 177-206. |
| [14] | Yuan MH, Jiang ZY, Bi GZ, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity [J]. Nature, 2021, 592(7852): 105-109. |
| [15] | Wang W, Withers J, Li H, et al. Structural basis of salicylic acid perception by Arabidopsis NPR proteins [J]. Nature, 2020, 586(7828): 311-316. |
| [16] | Wicker T, Oberhaensli S, Parlange F, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph [J]. Nat Genet, 2013, 45(9): 1092-1096. |
| [17] | Depotter JRL, Doehlemann G. Target the core: durable plant resistance against filamentous plant pathogens through effector recognition [J]. Pest Manag Sci, 2020, 76(2): 426-431. |
| [18] | Kanja C, Hammond-Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens [J]. Mol Plant Pathol, 2020, 21(10): 1353-1376. |
| [19] | Bourras S, McNally KE, Ben-David R, et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew [J]. Plant Cell, 2015, 27(10): 2991-3012. |
| [20] | Hewitt T, Müller MC, Molnár I, et al. A highly differentiated region of wheat chromosome 7AL encodes aPM1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis [J]. New Phytol, 2021, 229(5): 2812-2826. |
| [21] | Kunz L, Sotiropoulos AG, Graf J, et al. The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen [J]. BMC Biol, 2023, 21(1): 29. |
| [22] | Müller MC, Praz CR, Sotiropoulos AG, et al. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew [J]. New Phytol, 2019, 221(4): 2176-2189. |
| [23] | Praz CR, Bourras S, Zeng FS, et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus [J]. New Phytol, 2017, 213(3): 1301-1314. |
| [24] | Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202. |
| [25] | Bai SY, Long JH, Cui YY, et al. Regulation of hormone pathways in wheat infested by Blumeria graminis f.sp. tritici [J]. BMC Plant Biol, 2023, 23(1): 554. |
| [26] | 白双宇, 崔原瑗, 王昭懿, 等. 小麦响应白粉菌侵染的表型特征、生理应答和免疫信号传导通路分析 [J]. 植物遗传资源学报, 2024, 25(4): 522-532. |
| Bai SY, Cui YY, Wang ZY, et al. Analysis of phenotypic characteristics, physiological responses, and immune signaling pathways in wheat in response to Blumeria graminis f. sp. tritici [J]. Journal of Plant Genetic Resources, 2024, 25(4): 522-532. | |
| [27] | 王俊美, 徐飞, 宋玉立, 等. 小麦白粉菌ADP/ATP载体蛋白基因的克隆及表达特征分析 [J]. 植物病理学报, 2018, 48(3): 339-345. |
| Wang JM, Xu F, Song YL, et al. Cloning of an ADP/ATP carrier protein-coding genein Blumeria graminis. sp. tritici and analysis on its expression pattern during infection process [J]. Acta Phytopathol Sin, 2018, 48(3): 339-345. | |
| [28] | 李晓川, 王朝海, 周平, 等. 基于转录组测序的马铃薯晚疫病抗病基因筛选 [J]. 西南农业学报, 2023, 36(4): 732-741. |
| Li XC, Wang CH, Zhou P, et al. Screening of resistant genes to late blight disease of potato (Solanum tuberosum L.) based on transcriptome sequencing [J]. Southwest China Journal of Agricultural Sciences, 2023, 36(4): 732-741. | |
| [29] | 张宇, 王金开, 陈小林, 等. 水稻响应白叶枯病菌侵染的转录组分析 [J]. 南方农业学报, 2023, 54(3): 815-828. |
| Zhang Y, Wang JK, Chen XL, et al. Transcriptome analysis of rice in response to the infection by Xanthomonas oryzae pv. oryzae [J]. J South Agric, 2023, 54(3): 815-828. | |
| [30] | Gow NAR, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function [J]. Microbiol Spectr, 2017, 5(3): 5.3.01. |
| [31] | Presti LL, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility [J]. Annu Rev Plant Biol, 2015, 66: 513-545. |
| [32] | Zhang H, Zheng X, Zhang Z. The Magnaporthe grisea species complex and plant pathogenesis [J]. Mol Plant Pathol, 2016, 17(6): 796-804. |
| [33] | Ivanov SV, Stefcheva M, P- EMITEVA L. Salicylic acid alleviates leaf rust-inducible oxidative processes in wheat plants [J]. Oxid Commun, 2008, 31(4): 895-903. |
| [34] | Chen LZ, Liu J, Liu ZY, et al. Genome-wide identification and expression analysis of the MLO gene family reveal a candidate gene associated with powdery mildew susceptibility in bitter gourd (Momordica charantia) [J]. Eur J Plant Pathol, 2021, 159(1): 163-178. |
| [35] | 齐学礼, 李莹, 李春盈, 等. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析 [J]. 作物学报, 2024, 50(4): 1080-1090. |
| Qi XL, Li Y, Li CY, et al. Based on transcriptome, the mitigation effect of exogenous salicylic acid on wheat seedlings infected by stripe rust and the analysis of differentially expressed genes were explored [J]. China Ind Econ, 2024, 50(4): 1080-1090. | |
| [36] | 王子然, 鲁一薇, 杨婧怡, 等. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响 [J]. 作物学报, 2024, 50(11): 2883-2895. |
| Wang ZR, Lu YW, Yang JY, et al. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. China Ind Econ, 2024, 50(11): 2883-2895. |
| [1] | LI Yan-wei, YANG Yan-yan, SUN Ya-ling, HUO Yu-meng, WANG Zhen-bao, LIU Bing-jiang. Regulation Mechanism of Plant Hormones Related to Onion Bulb Enlargement and Development Based on Transcriptome Analysis [J]. Biotechnology Bulletin, 2025, 41(2): 187-201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||