Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (8): 322-334.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0422
ZHANG Ru(
), LI Yi-ming, ZHANG Tong-xi, SUN Zhan-bin, REN Qing(
), PAN Han-xu(
)
Received:2025-04-22
Online:2025-08-26
Published:2025-08-14
Contact:
REN Qing, PAN Han-xu
E-mail:13975091985@163.com;renqing@th.btbu.edu.cn;phx@btbu.edu.cn
ZHANG Ru, LI Yi-ming, ZHANG Tong-xi, SUN Zhan-bin, REN Qing, PAN Han-xu. Isolation and Identification of a High-yielding Magnolol and Honokiol Strain from Magnolia officinalis and Optimization of the “Sweating” Process[J]. Biotechnology Bulletin, 2025, 41(8): 322-334.
| 属 Genus | 筛选培养基 Screening medium | 稀释梯度 Dilution gradient | 数量 Number |
|---|---|---|---|
| Bordetella(鲍特氏菌属) | TSA | 10-3 | 1 |
| Alcaligenes(产碱杆菌属) | TSA/BHI | 10-4/10-5 | 4 |
| Brevundimonas(短波单胞菌属) | TSA/BHI | 10-4/10-5 | 3 |
| Brucella(布鲁氏菌属) | TSA | 10-4 | 1 |
| Stenotrophomonas(黄单胞菌属) | NA/TSA/BHI/R2A | 10-4/10-5 | 5 |
| Acinetobacter(不动杆菌属) | NA/TSA/BHI/R2A | 10-4/10-5 | 4 |
| Pseudomonas(假单胞菌属) | NA/BHI | 10-4 | 3 |
| Enterobacter(肠杆菌属) | R2A | 10-4 | 1 |
| Klebsiella(克雷伯氏菌属) | R2A | 10-4/10-5/10-6 | 4 |
| Leclercia(勒克氏菌属) | NA | 10-4 | 1 |
| Curtobacterium(短小杆菌属) | NA/TSA | 10-4/10-5 | 3 |
| Georgenia(乔治菌属) | NA/TSA/BHI | 10-3/10-4/10-5 | 5 |
| Brevibacterium(短杆菌属) | NA/TSA/BHI | 10-3/10-4/10-5 | 4 |
| Streptomyces(链霉菌属) | TSA | 10-4 | 1 |
| Chryseobacterium(金黄杆菌属) | NA | 10-4 | 1 |
| Staphylococcus(葡萄球菌属) | NA | 10-4 | 1 |
| Lysinibacillus(赖氨酸芽胞杆菌属) | NA/TSA | 10-4 | 2 |
| Sporosarcina(八叠球菌属) | TSA | 10-4 | 1 |
| Oceanobacillus(大洋芽胞杆菌属) | TSA | 10-5 | 1 |
| Bacillus(芽胞杆菌属) | TSA/BHI | 10-3 | 2 |
Table 1 Information of screening strain
| 属 Genus | 筛选培养基 Screening medium | 稀释梯度 Dilution gradient | 数量 Number |
|---|---|---|---|
| Bordetella(鲍特氏菌属) | TSA | 10-3 | 1 |
| Alcaligenes(产碱杆菌属) | TSA/BHI | 10-4/10-5 | 4 |
| Brevundimonas(短波单胞菌属) | TSA/BHI | 10-4/10-5 | 3 |
| Brucella(布鲁氏菌属) | TSA | 10-4 | 1 |
| Stenotrophomonas(黄单胞菌属) | NA/TSA/BHI/R2A | 10-4/10-5 | 5 |
| Acinetobacter(不动杆菌属) | NA/TSA/BHI/R2A | 10-4/10-5 | 4 |
| Pseudomonas(假单胞菌属) | NA/BHI | 10-4 | 3 |
| Enterobacter(肠杆菌属) | R2A | 10-4 | 1 |
| Klebsiella(克雷伯氏菌属) | R2A | 10-4/10-5/10-6 | 4 |
| Leclercia(勒克氏菌属) | NA | 10-4 | 1 |
| Curtobacterium(短小杆菌属) | NA/TSA | 10-4/10-5 | 3 |
| Georgenia(乔治菌属) | NA/TSA/BHI | 10-3/10-4/10-5 | 5 |
| Brevibacterium(短杆菌属) | NA/TSA/BHI | 10-3/10-4/10-5 | 4 |
| Streptomyces(链霉菌属) | TSA | 10-4 | 1 |
| Chryseobacterium(金黄杆菌属) | NA | 10-4 | 1 |
| Staphylococcus(葡萄球菌属) | NA | 10-4 | 1 |
| Lysinibacillus(赖氨酸芽胞杆菌属) | NA/TSA | 10-4 | 2 |
| Sporosarcina(八叠球菌属) | TSA | 10-4 | 1 |
| Oceanobacillus(大洋芽胞杆菌属) | TSA | 10-5 | 1 |
| Bacillus(芽胞杆菌属) | TSA/BHI | 10-3 | 2 |
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| Con1 | 32.3 | 403.4 | 0.142 8 | 1.792 4 | 1.935 1 | 1.928 0 | 0.006 541 | 0.339 2 |
| Con2 | 31.9 | 400.9 | 0.141 0 | 1.781 3 | 1.922 2 | |||
| Con3 | 32.6 | 401.2 | 0.144 1 | 1.782 6 | 1.926 7 |
Table 2 Blank control liquid chromatography results
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| Con1 | 32.3 | 403.4 | 0.142 8 | 1.792 4 | 1.935 1 | 1.928 0 | 0.006 541 | 0.339 2 |
| Con2 | 31.9 | 400.9 | 0.141 0 | 1.781 3 | 1.922 2 | |||
| Con3 | 32.6 | 401.2 | 0.144 1 | 1.782 6 | 1.926 7 |
Fig. 7 Effects of various factors on the total contents of magnolol and honokiola: Sweating temperature; b: sweating time; c: boiling time; d: drying temperature. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; ns: P>0.05
| 水平 Level | 因素 Factor | |||
|---|---|---|---|---|
| A (℃) | B (d) | C (min) | D (℃) | |
| -1 | 26 | 1 | 2 | 60 |
| 0 | 30 | 2 | 5 | 70 |
| 1 | 37 | 3 | 8 | 80 |
Table 3 Design factor level table of strain HP3 Box-behnken
| 水平 Level | 因素 Factor | |||
|---|---|---|---|---|
| A (℃) | B (d) | C (min) | D (℃) | |
| -1 | 26 | 1 | 2 | 60 |
| 0 | 30 | 2 | 5 | 70 |
| 1 | 37 | 3 | 8 | 80 |
编号 Number | A (℃) | B (d) | C (min) | D (℃) | HG与MG总量 Total HG and MG content (%) |
|---|---|---|---|---|---|
| 1 | 26 | 1 | 5 | 70 | 2.907 59 |
| 2 | 37 | 1 | 5 | 70 | 3.139 94 |
| 3 | 26 | 3 | 5 | 70 | 3.412 43 |
| 4 | 37 | 3 | 5 | 70 | 3.402 1 |
| 5 | 30 | 2 | 2 | 60 | 3.860 73 |
| 6 | 30 | 2 | 8 | 60 | 3.854 63 |
| 7 | 30 | 2 | 2 | 80 | 3.425 49 |
| 8 | 30 | 2 | 8 | 80 | 5.239 62 |
| 9 | 26 | 2 | 5 | 60 | 3.555 42 |
| 10 | 37 | 2 | 5 | 60 | 4.092 13 |
| 11 | 26 | 2 | 5 | 80 | 3.678 26 |
| 12 | 37 | 2 | 5 | 80 | 4.717 56 |
| 13 | 30 | 1 | 2 | 70 | 3.071 76 |
| 14 | 30 | 3 | 2 | 70 | 3.845 79 |
| 15 | 30 | 1 | 8 | 70 | 3.304 56 |
| 16 | 30 | 3 | 8 | 70 | 4.791 15 |
| 17 | 26 | 2 | 2 | 70 | 3.173 95 |
| 18 | 37 | 2 | 2 | 70 | 3.568 03 |
| 19 | 26 | 2 | 8 | 70 | 3.492 61 |
| 20 | 37 | 2 | 8 | 70 | 4.105 06 |
| 21 | 30 | 1 | 5 | 60 | 3.197 37 |
| 22 | 30 | 3 | 5 | 60 | 4.118 85 |
| 23 | 30 | 1 | 5 | 80 | 3.809 2 |
| 24 | 30 | 3 | 5 | 80 | 3.531 73 |
| 25 | 30 | 2 | 5 | 70 | 5.103 93 |
| 26 | 30 | 2 | 5 | 70 | 5.001 94 |
| 27 | 30 | 2 | 5 | 70 | 4.334 28 |
Table 4 Experimental design and results of response surface methodology optimization for total HG and MG content
编号 Number | A (℃) | B (d) | C (min) | D (℃) | HG与MG总量 Total HG and MG content (%) |
|---|---|---|---|---|---|
| 1 | 26 | 1 | 5 | 70 | 2.907 59 |
| 2 | 37 | 1 | 5 | 70 | 3.139 94 |
| 3 | 26 | 3 | 5 | 70 | 3.412 43 |
| 4 | 37 | 3 | 5 | 70 | 3.402 1 |
| 5 | 30 | 2 | 2 | 60 | 3.860 73 |
| 6 | 30 | 2 | 8 | 60 | 3.854 63 |
| 7 | 30 | 2 | 2 | 80 | 3.425 49 |
| 8 | 30 | 2 | 8 | 80 | 5.239 62 |
| 9 | 26 | 2 | 5 | 60 | 3.555 42 |
| 10 | 37 | 2 | 5 | 60 | 4.092 13 |
| 11 | 26 | 2 | 5 | 80 | 3.678 26 |
| 12 | 37 | 2 | 5 | 80 | 4.717 56 |
| 13 | 30 | 1 | 2 | 70 | 3.071 76 |
| 14 | 30 | 3 | 2 | 70 | 3.845 79 |
| 15 | 30 | 1 | 8 | 70 | 3.304 56 |
| 16 | 30 | 3 | 8 | 70 | 4.791 15 |
| 17 | 26 | 2 | 2 | 70 | 3.173 95 |
| 18 | 37 | 2 | 2 | 70 | 3.568 03 |
| 19 | 26 | 2 | 8 | 70 | 3.492 61 |
| 20 | 37 | 2 | 8 | 70 | 4.105 06 |
| 21 | 30 | 1 | 5 | 60 | 3.197 37 |
| 22 | 30 | 3 | 5 | 60 | 4.118 85 |
| 23 | 30 | 1 | 5 | 80 | 3.809 2 |
| 24 | 30 | 3 | 5 | 80 | 3.531 73 |
| 25 | 30 | 2 | 5 | 70 | 5.103 93 |
| 26 | 30 | 2 | 5 | 70 | 5.001 94 |
| 27 | 30 | 2 | 5 | 70 | 4.334 28 |
来源 Source | 离差平方和 Sum of squared | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 9.55 | 14 | 0.682 4 | 5.39 | 0.002 9 | Significant |
| A | 0.655 5 | 1 | 0.655 5 | 5.17 | 0.042 1 | Significant |
| B | 0.922 5 | 1 | 0.922 5 | 7.28 | 0.019 4 | Significant |
| C | 1.16 | 1 | 1.160 | 9.12 | 0.010 7 | Significant |
| D | 0.307 2 | 1 | 0.307 2 | 2.42 | 0.145 5 | |
| AB | 0.032 1 | 1 | 0.032 1 | 0.253 6 | 0.623 7 | |
| AC | 0.002 5 | 1 | 0.002 5 | 0.019 7 | 0.890 6 | |
| AD | 0.072 1 | 1 | 0.072 1 | 0.568 7 | 0.465 3 | |
| BC | 0.126 9 | 1 | 0.126 9 | 1.00 | 0.336 7 | |
| BD | 0.359 4 | 1 | 0.359 4 | 2.84 | 0.118 0 | |
| CD | 0.828 3 | 1 | 0.828 3 | 6.54 | 0.025 2 | Significant |
| A2 | 3.19 | 1 | 3.190 | 25.13 | 0.000 3 | Significant |
| B2 | 3.51 | 1 | 3.510 | 27.67 | 0.000 2 | Significant |
| C2 | 0.899 5 | 1 | 0.899 5 | 7.10 | 0.020 6 | Significant |
| D2 | 0.312 9 | 1 | 0.312 9 | 2.47 | 0.142 1 | |
| 残差 Residual | 1.52 | 12 | 0.126 7 | |||
| 失拟项 Lack of fit | 1.17 | 10 | 0.117 1 | 0.670 2 | 0.729 0 | Non-significant |
| 纯误差 Pure error | 0.349 5 | 2 | 0.174 8 | |||
| 总和 Total sum | 11.07 | 26 | ||||
| R2=0.862 7 | ||||||
Table 5 Regression analysis results of regression coefficient
来源 Source | 离差平方和 Sum of squared | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 模型 Model | 9.55 | 14 | 0.682 4 | 5.39 | 0.002 9 | Significant |
| A | 0.655 5 | 1 | 0.655 5 | 5.17 | 0.042 1 | Significant |
| B | 0.922 5 | 1 | 0.922 5 | 7.28 | 0.019 4 | Significant |
| C | 1.16 | 1 | 1.160 | 9.12 | 0.010 7 | Significant |
| D | 0.307 2 | 1 | 0.307 2 | 2.42 | 0.145 5 | |
| AB | 0.032 1 | 1 | 0.032 1 | 0.253 6 | 0.623 7 | |
| AC | 0.002 5 | 1 | 0.002 5 | 0.019 7 | 0.890 6 | |
| AD | 0.072 1 | 1 | 0.072 1 | 0.568 7 | 0.465 3 | |
| BC | 0.126 9 | 1 | 0.126 9 | 1.00 | 0.336 7 | |
| BD | 0.359 4 | 1 | 0.359 4 | 2.84 | 0.118 0 | |
| CD | 0.828 3 | 1 | 0.828 3 | 6.54 | 0.025 2 | Significant |
| A2 | 3.19 | 1 | 3.190 | 25.13 | 0.000 3 | Significant |
| B2 | 3.51 | 1 | 3.510 | 27.67 | 0.000 2 | Significant |
| C2 | 0.899 5 | 1 | 0.899 5 | 7.10 | 0.020 6 | Significant |
| D2 | 0.312 9 | 1 | 0.312 9 | 2.47 | 0.142 1 | |
| 残差 Residual | 1.52 | 12 | 0.126 7 | |||
| 失拟项 Lack of fit | 1.17 | 10 | 0.117 1 | 0.670 2 | 0.729 0 | Non-significant |
| 纯误差 Pure error | 0.349 5 | 2 | 0.174 8 | |||
| 总和 Total sum | 11.07 | 26 | ||||
| R2=0.862 7 | ||||||
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| Y1 | 92.7 | 615.3 | 0.426 8 | 2.734 | 3.160 6 | 3.165 3 | 0.015 17 | 0.479 3 |
| Y2 | 88.5 | 621.6 | 0.391 1 | 2.761 8 | 3.153 0 | |||
| Y3 | 91.6 | 625.1 | 0.404 8 | 2.777 4 | 3.182 2 |
Table 6 Blank control liquid chromatography results
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| Y1 | 92.7 | 615.3 | 0.426 8 | 2.734 | 3.160 6 | 3.165 3 | 0.015 17 | 0.479 3 |
| Y2 | 88.5 | 621.6 | 0.391 1 | 2.761 8 | 3.153 0 | |||
| Y3 | 91.6 | 625.1 | 0.404 8 | 2.777 4 | 3.182 2 |
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 113.5 | 999.2 | 0.522 5 | 4.439 6 | 4.962 1 | 4.986 0 | 0.020 8 | 0.417 3 |
| 2 | 117.4 | 1 008.5 | 0.518 9 | 4.480 9 | 4.999 8 | |||
| 3 | 114.9 | 1 010.2 | 0.507 8 | 4.488 4 | 4.996 3 |
Table 7 Process verification results
样品 Sample | 和厚朴酚峰面积 Honokiol peak area | 厚朴酚峰面积 Magnolol peak area | 和厚朴酚含量 Honokiol content (%) | 厚朴酚含量 Magnolol content (%) | 总量 Total content (%) | 平均值 Average value | 标准偏差 SD | 相对标准偏差 RSD (%) |
|---|---|---|---|---|---|---|---|---|
| 1 | 113.5 | 999.2 | 0.522 5 | 4.439 6 | 4.962 1 | 4.986 0 | 0.020 8 | 0.417 3 |
| 2 | 117.4 | 1 008.5 | 0.518 9 | 4.480 9 | 4.999 8 | |||
| 3 | 114.9 | 1 010.2 | 0.507 8 | 4.488 4 | 4.996 3 |
| [1] | Chen YH, Huang PH, Lin FY, et al. Magnolol: a multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis [J]. Eur J Integr Med, 2011, 3(4): e317-e324. |
| [2] | Kim H, Lim CY, Chung MS. Magnolia officinalis and its honokiol and magnolol constituents inhibit human norovirus surrogates [J]. Foodborne Pathog Dis, 2021, 18(1): 24-30. |
| [3] | 国家药典委员会. 中华人民共和国药典-三部: 2020年版 [M]. 北京: 中国医药科技出版社, 2020. |
| National Pharmacopoeia Commission. People's republic of China (PRC) pharmacopoeia-part III: 2020 edition [M]. Beijing: China Medical Science Press, 2020. | |
| [4] | 贾音, 任晨曦, 夏悠楠, 等. 厚朴酚的药理作用研究现状 [J]. 生物化工, 2023, 9(3): 170-174. |
| Jia Y, Ren CX, Xia YN, et al. Research status of pharmacological action of magnolol [J]. Biol Chem Eng, 2023, 9(3): 170-174. | |
| [5] | 王颖, 陈文强, 邓百万, 等. 厚朴酚与和厚朴酚的药理作用及提取合成研究进展 [J]. 陕西理工大学学报: 自然科学版, 2018, 34(2): 58-64, 78. |
| Wang Y, Chen WQ, Deng BW, et al. Advances in pharmacological effects, extraction and synthesis of magnolol and honokiol [J]. J Shaanxi Univ Technol Nat Sci Ed, 2018, 34(2): 58-64, 78. | |
| [6] | Sarrica A, Kirika N, Romeo M, et al. Safety and toxicology of magnolol and honokiol [J]. Planta Med, 2018, 84(16): 1151-1164. |
| [7] | Xu JW, Xu H. Magnolol: chemistry and biology [J]. Ind Crops Prod, 2023, 205: 117493. |
| [8] | Sciacca C, Cardullo N, Pulvirenti L, et al. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors [J]. Bioorg Chem, 2023, 134: 106455. |
| [9] | Yuan Y, Zhou XC, Wang YY, et al. Cardiovascular modulating effects of magnolol and honokiol, two polyphenolic compounds from traditional Chinese medicine-Magnolia officinalis [J]. Curr Drug Targets, 2020, 21(6): 559-572. |
| [10] | Ranaware AM, Banik K, Deshpande V, et al. Magnolol: a neolignan from the Magnolia family for the prevention and treatment of cancer [J]. Int J Mol Sci, 2018, 19(8): 2362. |
| [11] | Yu CP, Li PY, Chen SY, et al. Magnolol and honokiol inhibited the function and expression of BCRP with mechanism exploration [J]. Molecules, 2021, 26(23): 7390. |
| [12] | Lovecká P, Svobodová A, Macůrková A, et al. Decorative Magnolia plants: a comparison of the content of their biologically active components showing antimicrobial effects [J]. Plants, 2020, 9(7): 879. |
| [13] | Stefanache A, Ignat M, Peptu C, et al. Development of a prolonged-release drug delivery system with magnolol loaded in amino-functionalized mesoporous silica [J]. Appl Sci, 2017, 7(3): 237. |
| [14] | Konoshima T, Kozuka M, Tokuda H, et al. Studies on inhibitors of skin tumor promotion, IX. Neolignans from Magnolia officinalis [J]. J Nat Prod, 1991, 54(3): 816-822. |
| [15] | Wang LQ, Wang D, Yuan SZ, et al. Transcriptomic insights into the antifungal effects of magnolol on the growth and mycotoxin production of Alternaria alternata [J]. Toxins, 2020, 12(10): 665. |
| [16] | Cai XY, Jiang XQ, Zhao M, et al. Identification of the target protein and molecular mechanism of honokiol in anti-inflammatory action [J]. Phytomedicine, 2023, 109: 154617. |
| [17] | Lü JL, Zhao J, Duan JN, et al. Quality evaluation of Angelica sinensis by simultaneous determination of ten compounds using LC-PDA [J]. Chromatographia, 2009, 70(3): 455-465. |
| [18] | 李亚霏, 杜伟锋, 姜东京, 等. 续断产地加工“发汗” 前后总皂苷及常春藤皂苷元的含量测定 [J]. 甘肃中医药大学学报, 2016, 33(2): 51-54. |
| Li YF, Du WF, Jiang DJ, et al. Content determination of total saponins and hederagenin in Radix dipsaci before and after processing [J]. J Gansu Univ Chin Med, 2016, 33(2): 51-54. | |
| [19] | 刘畅, 王潇, 刘芳, 等. “发汗” 前后厚朴质量标志物的预测分析 [J]. 中国中药杂志, 2021, 46(11): 2686-2690. |
| Liu C, Wang X, Liu F, et al. Q-marker prediction of Magnoliae Officinalis Cortex before and after “sweating” [J]. China J Chin Mater Med, 2021, 46(11): 2686-2690. | |
| [20] | 陈佩东, 薛露, 严辉, 等. 厚朴“发汗” 工艺的研究 [J]. 中成药, 2015, 37(11): 2469-2472. |
| Chen PD, Xue L, Yan H, et al. “Fahan” technology of Magnolia officinalis [J]. Chin Tradit Pat Med, 2015, 37(11): 2469-2472. | |
| [21] | 刘芳, 卫莹芳, 胡慧玲. 厚朴“发汗”的研究现状与思考 [J]. 实用医院临床杂志, 2013, 10(3): 191-192. |
| Liu F, Wei YF, Hu HL. Research states and thinking on sweating process for Magnolia officinalis [J]. Pract J Clin Med, 2013, 10(3): 191-192. | |
| [22] | 杨红兵, 詹亚华, 陈科力, 等. 发汗与去皮对厚朴中酚类成分含量的影响 [J]. 中药材, 2007, 30(1): 22-23. |
| Yang HB, Zhan YH, Chen KL, et al. Effects of sweating and peeling on the content of phenolic compounds in Magnolia officinalis [J]. J Chin Med Mater, 2007, 30(1): 22-23. | |
| [23] | 余盛贤, 张春霞, 陈承瑜, 等. “发汗” 对厚朴质量的影响 [J]. 中国中药杂志, 2010, 35(14): 1831-1835. |
| Yu SX, Zhang CX, Chen CY, et al. Effects of primary processing on quality of cortex Magnolia officinalis [J]. China J Chin Mater Med, 2010, 35(14): 1831-1835. | |
| [24] | 刘畅, 王潇, 刘芳, 等. 基于多指标质量差异关键属性优化厚朴产地加工“发汗”工艺 [J]. 中草药, 2021, 52(3): 677-684. |
| Liu C, Wang X, Liu F, et al. Optimization of “sweating” process in producing area for Magnoliae Officinalis Cortex based on multi-index determinant attributes of quality difference [J]. Chin Tradit Herb Drugs, 2021, 52(3): 677-684. | |
| [25] | 朱林峰, 张媛, 冯紫薇, 等. “发汗”对厚朴药材质量影响的研究及其工艺的建立 [J]. 中国现代中药, 2019, 21(11): 1551-1556, 1563. |
| Zhu LF, Zhang Y, Feng ZW, et al. Effect of primary processing method “Sweating” on quality of cortex magnoliae officinals [J]. Mod Chin Med, 2019, 21(11): 1551-1556, 1563. | |
| [26] | Wu Q, Wei D, Dong LL, et al. Variation in the microbial community contributes to the improvement of the main active compounds of Magnolia officinalis Rehd. et Wils in the process of sweating [J]. Chin Med, 2019, 14: 45. |
| [27] | 朱兴龙, 卢丽洁, 吴清华, 等. 基于成分变化研究厚朴“发汗”过程中颜色与酶促反应的关系 [J]. 中国中药杂志, 2022, 47(5): 1262-1272. |
| Zhu XL, Lu LJ, Wu QH, et al. Composition changes reveal relationship between color and enzymaticreaction of Magnoliae Officinalis Cortex during “sweating” process [J]. China J Chin Mater Med, 2022, 47(5): 1262-1272. | |
| [28] | 李玉平, 严春兰, 骆进程, 等. 中药厚朴发汗过程中微生物群落结构及特征的分析 [J]. 云南中医中药杂志, 2022, 43(7):78-84. |
| Li YP, Yan CL, Luo JC, et al. Analysis of the Microbial Community structure and Characteristics during the Sweating Process of the Traditional Chinese medicine Magnolia Officinalis [J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2022, 43(7):78-84. | |
| [29] | 张佳旭, 黄成凤, 朱兴龙, 等. 基于CRITIC结合Box-Behnken响应面法的厚朴产地趁鲜加工与炮制一体化工艺研究 [J]. 中草药, 2023, 54(17): 5560-5567. |
| Zhang JX, Huang CF, Zhu XL, et al. Research on integration of fresh processing and processing process of Magnolia officinalis origin based on CRITIC combined with Box-Behnken responsesurface method [J]. Chin Tradit Herb Drugs, 2023, 54(17): 5560-5567. | |
| [30] | 陈茹, 陈成, 杨兴鑫, 等. 中药“发汗”炮制法的现代研究进展 [J]. 中草药, 2018, 49(2): 489-493. |
| Chen R, Chen C, Yang XX, et al. Modern research progress of Chinese materia Medica diaphoretic processing method [J]. Chin Tradit Herb Drugs, 2018, 49(2): 489-493. | |
| [31] | 王晓宇, 张松林, 王颖, 等. 基于高通量测序中江丹参“发汗”过程中优势微生物群落与主要药效成分相关性研究 [J]. 中草药, 2024, 55(2): 420-433. |
| Wang XY, Zhang SL, Wang Y, et al. Correlation between dominant microbial communities and major medicinal compositions in Salvia miltiorrhiza from Zhongjiang processed by “sweating” based on high-throughput sequencing [J]. Chin Tradit Herb Drugs, 2024, 55(2): 420-433. | |
| [32] | 周旭香, 田家瑛, 陈漂洋, 等. 基于“饮片-标准汤剂-药效”探讨“发汗”对茯苓质量的影响 [J]. 中草药, 2025, 56(7): 2330-2343. |
| Zhou XX, Tian JY, Chen PY, et al. Exploring effect of “sweating” on quality of Poria based on “decoction piecestandard decoction-efficacy” [J]. Chin Tradit Herb Drugs, 2025, 56(7): 2330-2343. | |
| [33] | 魏担, 吴清华, 刘钰萍, 等. 基于高通量测序研究厚朴“发汗” 过程中微生物群落多样性及其特征 [J]. 中国中药杂志, 2019, 44(24): 5405-5412. |
| Wei D, Wu QH, Liu YP, et al. Microbial community diversity and its characteristics in Magnolia Officinalis Cortex “sweating” process based on high-throughput sequencing [J]. China J Chin Mater Med, 2019, 44(24): 5405-5412. | |
| [34] | Shi XD, Yang LS, Gao JH, et al. Deep sequencing of Magnoliae officinalis reveals upstream genes related to the lignan biosynthetic pathway [J]. J For Res, 2017, 28(4): 671-681. |
| [35] | Yang Y, Li ZH, Zong H, et al. Identification and validation of magnolol biosynthesis genes in Magnolia officinalis [J]. Molecules, 2024, 29(3): 587. |
| [1] | XIANG Bo-ka, ZHOU Zuan-zuan, FENG Jia-hui, XIA Chen, LI Qi, CHEN Chun. Isolation and Identification of a Fungus from Moldy Tobacco Leaf and Study on Its Mold-causing Factors [J]. Biotechnology Bulletin, 2025, 41(2): 321-330. |
| [2] | ZHANG Ya-ya, LI Pan-pan, GAO Hui-hui, JIA Chen-bo, XU Chun-yan. Exploring on the Pathogenesis of Root Rot of Lycium barbarum cv. ‘Ningqi-5' Based on the Rhizoplane Fungal Community and Pathogens Identification [J]. Biotechnology Bulletin, 2024, 40(9): 238-248. |
| [3] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
| [4] | WANG Lu, LIU Meng-yu, ZHANG Fu-yuan, JI Shou-kun, WANG Yun, ZHANG Ying-jie, DUAN Chun-hui, LIU Yue-qin, YAN Hui. Isolation and Identification of Rumen Skatole-degrading Bacteria and Analysis on Their Degradation Characteristics [J]. Biotechnology Bulletin, 2024, 40(3): 305-311. |
| [5] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
| [6] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
| [7] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
| [8] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
| [9] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
| [10] | DONG Yi-hua, WANG Ling-xiao, REN Han-xue, CHEN Feng. Isolation and Identification of a Psychrotolerant Heterotrophic Nitrification-aerobic Denitrification Bacterium and Its Nitrogen-removing Characteristics [J]. Biotechnology Bulletin, 2023, 39(12): 237-249. |
| [11] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
| [12] | WANG Chun-yan, LA Gui-xiao, SU Xiu-hong, LI Meng, DONG Cheng-ming. Screening of Endophytic Bacteria from Rehmannia glutinosa at Different Stages and Analysis of Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(4): 242-252. |
| [13] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
| [14] | NIU Hong-yu, SHU Qian, YANG Hai-jun, YAN Zhi-yong, TAN Ju. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium [J]. Biotechnology Bulletin, 2022, 38(12): 287-299. |
| [15] | CUI Xin-yu, LI Rong-rong, CAI Rui, WANG Yan, ZHENG Meng-hu, XU Chun-cheng. Isolation,Identification of Lactic Acid Degrading Bacteria in Alfalfa Silage and Their Degradation Characterization [J]. Biotechnology Bulletin, 2021, 37(9): 58-67. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||