[1] 吴移谋. 支原体学[M]. 第2 版. 北京:人民卫生出版社, 2008. [2] Li Y, Zheng H, Liu Y, et al. The complete genome sequence of Mycoplasma bovis strain Hubei-1[J]. PLoS One, 2011, 6(6): e20999. [3] Liu YC, Lin IH, Chung WJ, et al. Proteomics characterization of cytoplasmic and lipid-associated membrane proteins of human pathogen Mycoplasma fermentans M64[J]. PLoS One, 2012, 7(4): e35304. [4] You XX, Zeng YH, Wu YM. Interactions between mycoplasma lipidassociated membrane proteins and the host cells. Journal of Zhejiang University SCIENCE B, 2006, 7(5):342-350. [5] Szczepanek SM, Frasca S Jr, Schumacher VL, et al. Identification of lipoprotein MslA as a neoteric virulence factor of Mycoplasma gallisepticum[J]. Infect Immun, 2010, 78(8):3475-3483. [6] Washburn LR, Bird DW, Dybvig K. Restoration of cytoadherence to an adherence-deficient mutant of Mycoplasma arthritidis by genetic complementation[J]. Infect Immun, 2003, 71(2):671-675. [7] Henrich B, Hopfe M, Kitzerow A, et al. The adherence-associated lipoprotein P100, encoded by an opp operon structure, functions as the oligopeptide-binding domain OppA of a putative oligopeptide transport system in Mycoplasma hominis[J]. J Bacteriol, 1999, 181(16):4873-4878. [8] Hopfe M, Henrich B. OppA, the ecto-ATPase of Mycoplasma hominis induces ATP release and cell death in HeLa cells[J]. BMC Microbiol, 2008, 4(8):55. [9] Love W, Dobbs N, Tabor L, et al. Toll-like receptor 2(TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma[J]. PLoS One, 2010, 5(5):e10739. [10] Shimizu T, Kida Y, Kuwano K. A dipalmitoylated lipoprotein from Mycoplasma pneumonia activates NF-κB through TLR1, TLR2, and TLR6[J]. J Immunol, 2005, 175(7):4641-4646. [11] Shimizu T, Kida Y, Kuwano K. A Triacylated lipoprotein from Mycoplasma genitalium activates NF-κB through Toll-like receptor (TLR1)and TLR2[J].Infection Immunity, 2008, 76(8): 3672-3678. [12] Kurokawa K, Ryu KH, Ichikawa R, et al. Novel bacterial lipoprotein structures conserved in Low-GC content Gram-positive bacteria are recognized by Toll-like Receptor 2[J]. J Biol Chen, 2012, 287 (16):13170-13181. [13] Damte D, Lee SJ, Hwang MH, et al. Inflammatory responses to Mycoplasma hyopneumoniae in murine alveolar macrophage cell lines[J]. New Zealand Veterinary Journal, 2011, 59(4):185- 190. [14] Hwang MH, Damte D, Lee JS, et al. Mycoplasma hyopneumoniae induces pro-inflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells[J]. Vet Res Commun, 2011, 35(1):21-34. [15] Into T, Nodasaka Y, Hasebe A, et al. Mycoplasmal lipoproteins induce toll-like receptor 2 and caspases-mediated cell death in lymphocytes and monocytes[J]. Microbiol Immunol, 2002, 46(4): 265-276. [16] Into T, Kiura K, Yasuda M, et al. Stimulation of human Toll-like receptor(TLR)2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-κB activation[J]. Cellular Microbiology, 2004, 6(2):187-199. [17] Into T, Shibata K. Apoptosis signal-regulating kinase 1-mediated sustained p38 mitogen-activated protein kinase activation regulates mycoplasma lipoprotein-and staphylococcal peptidoglycantriggered Toll-like receptor 2 signalling pathways[J]. Cellular Microbiology, 2005, 7(9):1305-1317. [18] Wu Y, Qiu H, Zeng Y, et al. Mycoplasma genitalium lipoproteins induce human monocytic cell expression of proinflammatory cytokines and apoptosis by activating nuclear factor kappaB[J]. Mediators Inflamn, 2008(2008). doi:10.1155/2008/195427 [19] Zeng Y, Wu Y, Deng Z, et al. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma penetrans is mediated by nuclear factor kappaB activation in mouse macrophage[J]. Can J Microbiol, 2008, 54(2):150-158. [20] Rechnitzer H, Brzuszkiewicz E, Strittmatter A, et al. Genomic featu生 物技术通报 Biotechnology Bulletin 2013年第2期54 res and insights into the biology of Mycoplasma fermentans[J]. Microbiology, 2011, 157(Pt 3):760-773. [21] Citti C, Watson-McKown R, Droesse M, et al. Gene families encoding phase-and size-variable surface lipoproteins of Mycoplasma hyorhinis[J]. J Bacteriol, 2000, 182(5):1356-1363. [22] Lysnyansky I, Ron Y, Yogev D. Juxtaposition of an active promoter to vsp genes via site-specific DNA inversions generates antigenic variation in Mycoplasma bovis[J]. J Bacteriol, 2001, 183(19): 5698-5708. [23] Bhugra B, Voelker LL, Zou N, et al. Mechanism of antigenic variation in Mycoplasma pulmonis:interwoven, sitespecific DNA inversions[J]. Mol Microbiol, 1995, 18(4):703-714. [24] Nouvel LX, Marenda M, Sirand-Pugent P, et al. Occurrence, plasticity, and evolution of the vpma gene family, a genetic system devoted to high-frequency surface variation in Mycoplasma agalactiae[J]. Journal of Bacteriology, 2009, 191(13):4111-4121. [25] Horino A, Kenri T, Sasaki Y, et al. Identification of a site-specific tyrosine recombinase that mediates promoter inversions of phasevariable mpl lipoprotein genes in Mycoplasma penetrans[J]. Microbiology, 2009, 155(Pt 4):1241-1249. [26] Noormohammadi AH, Markham PF, Kanci A, et al. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae[J]. Mol Microbiol, 2000, 35 (4):911-923. [27] Iverson-Cabral SL, Astete SG, Cohen CR, et al. MgpB and mgpC sequence diversity in Mycoplasma genitalium is generated by segmental reciprocal recombination with repetitive chromosomal sequences[J]. Mol Microbiol, 2007, 66(1):55-73. [28] Allen JL, Noormohammadi AH, Browning GF. The vlhA loci of Mycoplasma synoviae are confined to a restricted region of the genome[J]. Microbiology, 2005, 151(Pt 3):935-940. [29] Papazisi L, Gorton TS, Kutish G, et al. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R (low)[J]. Microbiology, 2003, 149(Pt 9):2307-2316. [30] Calcutt MJ, Lewis MS, Wise KS. Molecular genetic analysis of ICEF, an integrative conjugal element that is present as a repetitive sequence in the chromosome of Mycoplasma fermentans PG18[J]. J Bacteriol, 2002, 184(24):6929-6941. [31] Browning GF, Marenda MS, Noormohammadi AH, et al. The central role of lipoproteins in the pathogenesis of mycoplasmoses[J]. Vet Microbiology, 2011, 153(1-2):44-50. [32] Wu HN, Kawaguchi C, Nakane D, et al. "Mycoplasmal antigen modulation, " a novel surface variation suggested for a lipoprotein specifically localized on Mycoplasma mobile[J]. Curr Microbiol, 2012, 64(5):433-440. [33] Djordjevic SP, Cordwell SJ, Djordjevic MA, et al. Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin[J]. Infect Immun, 2004, 72(5):2791-2802. [34] Bolland JR, Dybvig K. Mycoplasma pulmonis Vsa proteins and polysaccharide modulate adherence to pulmonary epithelial cells[J]. FEMS Microbiol Lett, 2012, 331(1):25-30. [35] Bolland JR, Simmons W, Daubenspeak JM, et al. Mycoplasma polysaccharide protects against complement[J]. Microbiology, 2012, 158(Pt):1867-1873. [36] Elkind E, Vaisid T, Kornspan JD, et al. Calpastatin upregulation in Mycoplasma hyorhinis-infected cells is promoted by the mycoplasma lipoproteins via the NF-κB pathway[J]. Cell Microbiol, 2012, 14 (6):840-851. [37] Sato N, Oizumi T, Kinbara M, et al. Promotion of arthritis and allergy in mice by amino glycoglycerophospholipid, a membrane antigen specific to Mycoplasma fermentans[J]. FEMS Immunol Med Microbiol, 2010, 59(1):33-41. [38] Citti C, Nouvel LX, Baranowski E. Phase and antigenic variation in mycoplasmas[J]. Future Microbiol, 2010, 5(7):1073-1085. |