[1] 肖春玲, 徐常新. 微生物纤维素酶的应用研究[J]. 微生物学 杂志, 2002, 22(2):33-35.
[2] 王丹, 林建强, 张萧, 等. 直接生物转化纤维素类资源生产燃料 乙醇的研究进展[J]. 山东农业大学学报:自然科学版, 2002, 33(4):525-529.
[3] 岳思君, 郑蕊, 李爱华, 等. 纤维素分解菌协同作用研究[J].
安徽农业科学, 2009, 37(27):12892-12893.
[4] Ghoshal G, Kamble A, Shivhare US, et al. Optimization of culture conditions for the production of xylanase in submerge fermentation by Penicillium citrinum using response surface methodology[J].
International Journal of Research and Reviews in Applied Sciences, 2011, 6(2):132-137.
[5] Tallapragada P, Venkatesh K. Isolation, identification and optimization of xylanase enzyme[J]. Journal of Microbiology and Biotechnology Research, 2011, 1(4):137-147.
[6] 刘胜贵, 严明, 邹娟, 等. 纤维素降解真菌的筛选及其产酶条 件[J]. 中国农学通报, 2011, 27(7):102-106.
[7] Malabadi RB, Raghvendra S, Kumar SV. Production of cellulase-free xylanase from a novel yeast strain used for biobleaching in paper ind2013 年第4期109 于俊杰等:复合木质纤维素酶菌株筛选及其培养条件优化 ustry[J]. Research Journal of Microbiology, 2007, 2(1):24-33.
[8] Gigi C, Adina C, Gabriela E, et al. Optimization of biosynthesis conditions and catalitic behavior evaluation of cellulase-free xylanase produced by a new Streptomyces sp. strain[J]. AUDJG-Food Technology, 2011, 35(1):34-44.
[9] 袁晓华. β-葡萄糖苷酶产生菌的筛选、培养条件优化及β-葡萄 糖苷酶应用研究[D]. 济南:山东大学, 2009.
[10] 胡丹, 刘霞, 雷颉. 高产纤维素酶青霉菌的筛选和及产酶条件 的研究[J]. 现代食品科技, 2007, 23(3):14-17.
[11] Wu G, He R, Jia W, et al. Strain improvement and process optimization of Trichderma reesei Rut C30 for enhanced cellulase production[J]. Biofuels, 2011, 2(5):545-555.
[12] Ghose TK. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2):257-268.
[13] Bailey MJ, Bielpy P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity[J]. Journal of Biotechnology, 1992, 23(3):257-270.
[14] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248- 254.
[15] 魏景超. 真菌鉴定手册[M]. 上海:上海科学技术出版社, 1979 :501-512.
[16] 王文华, 刘娅, 江英. 绿色木霉产特定纤维素酶条件优化研 究[J]. 中国酿造, 2008(13):25-26.
[17] Wang C, Wu G, Chen C, et al. High Production of β-glucosidase by Aspergillus niger on corncob[J]. Applied Biochemistry and Biotechnology, 2012, 168(1):58-67.
[18] 田红梅, 江正强, 杨绍青, 等. 嗜热拟青霉利用玉米芯产木聚 糖酶的发酵条件优化[J]. 食品与发酵工业, 2006, 32(5):1-4.
[19] 王晓芳, 徐旭士, 吴敏, 等. 不同碳源对两株真菌纤维素酶合 成的诱导和调控[J]. 应用与环境生物学报, 2002, 8(6): 653-657.
[20] 冯蕾, 宋彦波, 徐晓立, 等. 赭绿青霉 Sp1 菌株木聚糖酶最佳 产酶条件及部分酶学特性研究[J]. 新疆农业科学, 2010, 47 (8):1606-1614.
[21] 曲音波. 木质纤维素降解酶系的基础和技术研究进展[J].
山东大学学报:理学版, 2011, 46(10):160-170.
[22] Li Y, Cui F, Liu Z, et al. Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology [J]. Enzyme and Microbial Technology, 2007, 40(5):1381- 1388.
[23] Liao H, Xu C, Tan S, et al. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ- 2[J]. Bioresour Technol, 2012, 123 :117-124.
[24] Pallavi D, Vivekanand V, Ganguly R, et al. Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation [J]. Biomass and Bioenergy, 2009, 33(4):581-588.
[25] Li X, Ljungdahl LG. Cloning, sequencing and regulation of a xylanase gene from the fungus Aureobasidium pullulans Y-2311- 1[J]. Appl Environ Microbiol, 1994, 60(9):3160-3166.
[26] Rajoka MI. Regulation of synthesis of endo-xylanase and β-xylosidase in Cellulomonas flavigena :a kinetic study[J].
World Journal of Microbiology and Biotechnology, 2005, 21(4): 463-469.
[27] Oliveira LA, Porto Ana LF, Tambourgi EB. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes[J]. Bioresour Technol, 2006, 97(6): 862-867. |