[1] Zhu C, Wen F, Zhao X, Hawes M. Isolation of the promoter of a root cap expressed pectinmethylesterase gene from Pisum sativum L. (rcpme1) and its use in the study of gene activity[J]. Plant and Soil, 2004, 265(1-2):47-59. [2] Rausch C, Daram P, Brunner S, et al. A phosphate transporter expressed in arbuscule-containing cells in potato[J]. Nature, 2001, 414(6862):462-470. [3] Huang G. Engineering broad root-knot resistance in transgenic plants by rnai silencing of a conserved and essential root-knot nematode parasitism gene[J]. Proceedings of the National Academy of Sciences, 2006, 103(39):14302-14306. [4] Gao P, Bai X, Yang L, et al. Osa-mir393 :A salinity- and alkaline stress-related microrna gene[J]. Molecular Biology Reports, 2011, 38(1):237-242. [5] Xu X, Guo S, Chen K, et al. A 796 bp pspr10 gene promoter fragment increased root-specific expression of the gus reporter gene under the abiotic stresses and signal molecules in tobacco[J]. Biotechnology Letters, 2010, 32(10):1533-1539. [6] Dolan L, Janmaat K, Willemsen V, et al. Cellular organisation of the Arabidopsis thaliana root[J]. Development, 1993, 119(1):71-84. [7] Galway ME, Masucci JD, Lloyd AM, et al. The ttg gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root[J]. Dev Biol, 1994, 166(2):740-754. [8] Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis[J]. Plant Cell, 2002, 14(12):3237-3253. [9] Bernhardt C, Tierney ML. Expression of atprp3, a proline-rich struc-tural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formati-on[J]. Plant Physiology, 2000, 122(3):705-714. [10] Kim DW, Lee SH, Choi SB, et al. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns[J]. Plant Cell, 2006, 18(11):2958-2970. [11] Grierson C, Schiefelbein J. Root hairs[J]. The Arabidopsis Book, 2002, 41(1):1. [12] Favery B, Ryan E, Foreman J, et al. Kojak encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis[J]. Genes & Development, 2001, 15(1):79-89. [13] Won SK, Choi SB, Kumari S, et al. Root hair-specific expansin b genes have been selected for graminaceae root hairs[J]. Molecules and Cells, 2010, 30(4):369-376. [14] Bemhardt C, Tierney ML. Expression of Atprp3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation[J]. Plant Physiology, 2000, 122(3):705-714. [15] Schiefelbein JW, Shipley A, Rowse P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana[J]. Planta, 1992, 187(4):455-459. [16] Legue V, Blancaflor E, Wymer C, et al. Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity[J]. Plant Physiology, 1997, 114(3):789-800. [17] Wen F, VanEtten HD, Tsaprailis G, Hawes MC. Extracellular proteins in pea root tip and border cell exudates[J]. Plant Physiology, 2007, 143(2):773-783. [18] Dunn A, Handelsman J. Toward an understanding of microbial communities through analysis of communication networks[J]. Antonie van Leeuwenhoek, 2002, 81(1):565-574. [19] Pi?lewska M, Bednarek P, Stobiecki M, et al. Cell wall-associated isoflavonoids and β-glucosidase activity in Lupinus albus plants responding to environmental stimuli[J]. Plant, Cell & Environ-ment, 2002, 25(1):20-40. [20] Bringhurst RM, Cardon ZG, Gage DJ. Galactosides in the rhizosphere:utilization by Sinorhizobium meliloti and development of a biosensor[J]. Proc Natl Acad Sci USA, 2001, 98(8):4540-4545. [21] Wen F, Zhu Y, Hawes MC. Effect of pectin methylesterase gene expression on pea root development[J]. Plant Cell, 1999, 11(6):1129-1140. [22] Iijima M, Griffiths B, Bengough AG. Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand[J]. New Phytologist, 2000, 145(3):477-482. [23] Zhao X, Misaghi IJ, Hawes MC. Stimulation of border cell production in response to increased carbon dioxide levels[J]. Plant Physiology, 2000, 122(1):181-188. [24] Bauer WD, Teplitski M. Can plants manipulate bacterial quorum sensing?[J] . Functional Plant Biology, 2001, 28(9):913-921. [25] Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245(1):35-47. [26] Hawes M, Bengough G, Cassab G, Ponce G. Root caps and rhizosp-here[J]. J Plant Growth Regul, 2002, 21(4):352-367. [27] del Campillo E, Abdel-Aziz A, Crawford D, Patterson SE. Root cap specific expression of an endo-b-1, 4-d-glucanase (cellulase):A new marker to study root development in Arabidopsis[J]. Plant Molecular Biology, 2004, 56(2):309-323. [28] Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ. Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida[J]. Plant Biotechnology Journal, 2004, 2(1):3-12. [29] Lilley CJ, Wang D, Atkinson HJ, Urwin PE. Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter[J]. Plant Biotechnol J, 2011, 9(2):151-161. [30] Lilley CJ, Bakhetia M, Charlton WL, Urwin PE. Recent progress in the development of rna interference for plant parasitic nematodes[J]. Mol Plant Pathol, 2007, 8(5):701-711. [31] Yamamoto YT, Taylor CG, Acedo GN, et al. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco[J]. Plant Cell, 1991, 3:371-382. [32] Fairbairn DJ, Cavallaro AS, Bernard M, et al. Host-delivered rnai:An effective strategy to silence genes in plant parasitic nematodes[J]. Planta, 2007, 226(6):1525-1533. [33] Liang D, White RG, Waterhouse PM. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement[J]. Plant Physiology, 2012, 159(3):984-1000. [34] Smith NA, Singh SP, Wang MB, et al. Gene expression:Total silencing by intron-spliced hairpin rnas[J]. Nature, 2000, 407(6802):319-320. [35] Vaughan SP, James DJ, Lindsey K, Massiah AJ. Characterization of farb7, a near root-specific gene from strawberry (Fragaria×ana-nassa Duch.) and promoter activity analysis in homologous and heterologous hosts[J]. J Exp Bot, 2006, 57(14):3901-3910. [36] Sarda X, Tousch D, Ferrare K, et al. Characterization of closely related delta-tip genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air[J]. Plant Mol Biol, 1999, 40(1):179-191. [37] Kirch HH, Vera-Estrella R, Golldack D, et al. Expression of water channel proteins in Mesembryanthemum crystallinum[J]. Plant Physiology, 2000, 123(1):111-1124. [38] Vijaybhaskar V, Subbiah V, Kaur J, et al. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter[J]. J Biosci, 2008, 33(2):185-193. [39] Chiou SJ, Liu WY, Fang CL, Lin TY. Characterization of the Scutellaria barbata glycosyltransferase gene and its promoter[J]. Planta, 2010, 232(4):963-974. [40] Xiao K, Liu J, Dewbre G, et al. Isolation and characterization of root-specific phosphate transporter promoters from Medicago truncatula[J]. Plant Biology, 2006, 8(4):439-449. [41] Chiou TJ, Liu H, Harrison MJ. The spatial expression patterns of a phosphate transporter (mtpt1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface[J]. Plant Journal, 2001, 25(3):281-293. [42] Schünmann PHD, Richardson AE, Smith F, Delhaize E. Character-ization of promoter expression patterns derived from the pht1 phos-phate transporter genes of barley (Hordeum vulgare L.)[J]. Journal of Experimental Botany, 2004, 55(398):855-865. [43] Brewin NJ. Development of the legume root nodule[J]. Annual Review of Cell Biology, 1991, 7(1):191-226. [44] Vieweg MF, Fruhling M, Quandt HJ, et al. The promoter of the Vicia faba L. leghemoglobin gene vflb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants[J]. Mol Plant Microbe Interact, 2004, 17(1):62-69. [45] Nakagawa T, Takane K, Sugimoto T, et al. Regulatory regions and nuclear factors involved in nodule-enhanced expression of a soybean phosphoenolpyruvate carboxylase gene:Implications for molecular evolution[J]. Molecular Genetics and Genomics, 2003, 269(2):163-172. [46] Fehlberg V, Vieweg MF, Dohmann EM, et al. The promoter of the leghaemoglobin gene vflb29:Functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots[J]. J Exp Bot, 2005, 56(413):799-806. [47] Eagle PA, Hanley-Bowdoin L. Cis elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication[J]. Journal of Virology, 1997, 71(9):6947-6955. [48] Eagle PA, Orozco BM, Hanley-Bowdoin L. A DNA sequence required for geminivirus replication also mediates transcriptional regulation[J]. Plant Cell, 1994, 6(8):1157-1170. [49] Sunitha S, Mahajan N, Veluthambi K. The trap/ren monodirectional promoter of mungbean yellow mosaic geminivirus (mymv) displays root-specific expression in transgenic tobacco[J]. Plant Cell, Tissue and Organ Culture, 2012, 109:535-545. [50] Preiss W, Jeske H. Multitasking in replication is common among geminiviruses[J]. J Virology, 2003, 77(5):2972-2980. [51] Shivaprasad PV, Akbergenov R, Trinks D, et al. Promoters, transcripts, and regulatory proteins of mungbean yellow mosaic geminivirus[J]. J Virology, 2005, 79(13):8149-8163. [52] Rajeswaran R, Sunitha S, Shivaprasad PV, et al. The mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants[J]. Molecular Plant Microbe Interactions, 2007, 20(12):1545-1554. [53] Koyama T, Ono T, Shimizu M, et al. Promoter of Arabidopsis tha-liana phosphate transporter gene drives root-specific expression of transgene in rice[J]. Journal of Bioscience and Bioengineering, 2005, 99(1):38-42. |