[1] Grubhofer N, Schleith L. Modified ionexchanger resins as specific adsorbent[J]. J Naturwissenschaften, 1953, 40:508-508. [2] Tosa T, Mori T, Fuse N, et al. Studies on continuous enzyme reactions Part V kinetic and industrial application of aminoacylase column for continuous optical resolution of acyl-dl-amino acids[J]. J Biotechnol Bioeng, 1967, 9:603-615. [3] Shakeel AA, Qayyum H. Potential applications of enzymes immobili-zed on/in nano materials:A review[J]. J Biotechnology Advan-ces, 2011, 9(5):1016-1028. [4] 尹艳丽, 王爱玲, 曹健, 等. 纳米载体固定化酶的研究[J]. 现代化工, 2007, 27(9):67-70. [5] Zuo P, Yu SM, Yang JR, et al. Research progress in support material for immobilization of horseradish peroxidase[J]. J Materials Review, 2007, 21(11):46-49. [6] 张珊, 游长江, 陶潜, 等. 磁性高分子微球的制备及其应用[J]. 广州化学, 2004, 29(2):45-56. [7] 刘宇, 郭晨, 王锋, 等. 磁性SiO2纳米粒子的制备及其用于漆酶固定化[J]. 过程工程学报, 2008, 8(3):583-588. [8] Kouassi GK, Irudayaraj J, McCarty G. Examination of cholesterol oxidase attachment to magnetic nanoparticles[J]. J Nanobiotech-nol, 2005, 3:1-9. [9] Huang SH, Liao MH, Chen DH. Direct binding and characterization of lipase onto magnetic nanoparticles[J]. J Biotechnol Prog, 2003, 19:1095-1100. [10] 李咏兰, 吕桂芬, 弓剑, 等. 纳米磁性微粒固定化纤维素酶及水解秸秆的研究[J]. 江西师范大学学报:自然科学版, 2011, 35(6):574-578. [11] Leslie D, Knecht, Nur Ali, et al. Nanoparticle-mediated remote control of enzymatic activity[J]. J Acs Nano, 2012, 9:1021-1029. [12] 潘利华, 罗建平, 王贵娟, 等. 磁性纳米氮化铝颗粒固定化β-葡萄糖苷酶的性质[J]. 催化学报, 2008, 29(10):1021-1026. [13] Ansari SA, Husain Q. Immobilization of Kluyveromyces lactis β-galactosidase on concanavalin A layered aluminum oxide nanoparticles- its future aspects in biosensor applications[J]. J Molecular Catalysis B:Enzyme, 2011, 70:119-126. [14] Zhou HC, Li W, Shou QH, et al. Immobilization of penicillin g acylase on magnetic nanoparticles modified by ionic liquids[J]. J Chinese Journal of Chemical Engineering, 2012, 20(1):146-151. [15] Wang JQ, Meng G, Tao K, et al. Immobilization of lipases on alkyl silane modified magnetic nanoparticles:effect of alkyl chain length on enzyme activity[J]. Plos One, 2012, 8(7):1-8. [16] Talekar S, Ghodake V, Ghotage T, et al. Novel magnetic cross-link-ed enzyme aggregates(magnetic CLEAs)of alpha amylase[J]. Bioresour Technol, 2012, 13(7):542-547. [17] Zhang LL, Zhao JJ, Jiang JH, et al. Enzyme-regulated unmodified gold nanoparticle aggregation:a label free colorimetric assay for rapid and sensitive detection of adenosine deaminase activity and inhibition[J]. Chem Commun, 2012, 48:10996-10998. [18] Klyachko NL, Sokolsky-Papkov M, Pothayee N, et al. Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field[J]. Angewandte Chemie, 2012, 51:1-5. [19] Gardimalla HM, Mandal D, Stevens PD, et al. Superparamagnetic nanoparticle supported enzymatic resolution of racemic carboxyla-tes[J]. J Chem Commun, 2005, 37:4432-4434. [20] Hong R, Emrick T, Rotello VM. Monolayer-controlled substrate selectivity using noneovalent enzyme-nanoparticle conjugates[J]. J Am Chem Soc, 2004, 126(42):13572-13573. [21] 刘仁霖, 罗晖, 常雁红. 纳米级酶固定化技术的发展[J]. 科学技术与工程, 2007, 7(7):1411-1415. [22] Zhang X, Guan RF, Wu DQ, et al. Enzyme immobilization on amin-ofuctionalized mesostructrued cellular foam surfaces, characteriza-tion and catalytic properties[J]. J Molecular Catalysis B:Enzy-matic, 2005, 38:33-43. [23] 陈金日, 冉旭, 王利. 壳聚糖纳米胶囊固定化α-淀粉酶及其特性的研究[J]. 中国酿造, 2009, 7(208):81-83. [24] Neri DFM, Balc?o VM, Costa RS, et al. Galactooligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysilox ane-polyvinyl alcohol[J]. J Food Chem, 2009, 115:92-99. [25] 黄磊, 程振民. 纳米-微米复合泡沫陶瓷固定化脂肪酶[J]. 催化学报, 2008, 29(1):57-62. [26] Jia H, Zhu G, Wang P. Catalytic behaviors of enzymes attached to nanoparticles:the effect of particle mobility[J]. J Biotechnol Bioeng, 2003, 84:406-414. [27] Pandey P, Singh SP, Arya SK, et al. Application of thiolated gold nanoparticles for enhancement of glucose oxidase activity[J]. J Langmuir, 2007, 23:3333-3337. [28] 郭刚军, 马林, 毛学圃, 等. 新型芳香胺-邻醌聚合物的合成及其作为纳米固定化酶载体的研究[J]. 化学学报, 2002, 60(3):499-503. [29] 王安明, 薛建跃, 万新军, 等. Ag/P(St-MMA)纳米复合高分子微球固定化青霉素酰化酶的研究[J]. 化工科技, 2007, 15(1):9-12. [30] 赵炳超, 肖宁, 马润宇. 纳米材料MCM-41的制备及其固定化酶的研究[J]. 北京化工大学学报, 2006, 33(1):8-11. [31] Miletic N, Abetz V, Ebert K, et al. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles[J]. J Macromol Rapid Commun, 2010, 1:71-74. [32] Chen HL, Yang WZ, Chen H, et al. Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan[J]. Colloids and Surfaces B:Biointerfaees, 2009, 73:212-218. [33] 黄赋, 王振刚, 万灵书, 等. 壳聚糖修饰纳米纤维膜表面对氧化还原酶行为的影响[J]. 高等学校化学学报, 2010, 31(5):1060-1064. [34] Eldin MMS, Zatahry AAE, Al-Sabah MB, et al. Immobilization of β-galactosidase onto copolymers nanoparticles of poly(acrylonitr-ile-co-methylmethacrylate):characterization and application to whey hydrolysis[J]. Nanotechnol Conf USA, 2010. [35] Liu W, Zhang S, Wang P. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration[J]. J Biotechnol, 2009, 139:102-107. [36] Neri DFM, Balcao VM, Carneiro-da-Cunha MG, et al. Immobiliza-tion of β-galactosidase from Kluyveromyces lactis onto a polysilo-xane-polyvinyl alcoholmagnetic(mPOS-PVA)composite for lact-ose hydrolysis[J]. J Catal Commun, 2008, 9:2334-2339. [37] 蔡宏, 徐颖, 何品刚, 等. 脱氧核糖核酸在电极表面的固定化研究进展[J]. 化学学报, 2004, 32(6):815-820. [38] 徐桂云, 范金石, 焦奎. 纳米颗粒在DNA固定化中的应用进展[J]. 传感器与微系统, 2008, 27(3):5-8. [39] 孔德领, 代军, 陈长治, 等. 球形纤维素固定化DNA 制备免疫吸附剂[J]. 高等学校化学学报, 2000, 21(12):1848-1851. [40] Li J, Hou Ng, Cassell A, et al. Carbon nanotube nanoelectrode array for urltrasensitive DNA detection[J] . Nano Letter, 2003, 3(5):597-602. [41] 刘盛辉, 陈帆, 奠卫民, 等. 单链膜DNA在氨基乙硫醇单分子金电极上固定化的研究[J]. 高等学校化学学报, 1999, 27(1):38-42. [42] Cai H, Xu Y, He PG, et al. Indicator free DNA hybridization dete-ction by impedance measurement based on the DNA-doped conduc-ting polymer film formed on the carbon nanotube modified elec-trode[J] . J Electro Analysis, 2003, 15(23-24):1864-1870. |