Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (9): 18-26.
Previous Articles Next Articles
Li Jie1,Zhong Jie1,Huang Jun4,Zhao Xiao3,Zhu Hongjian1,2
Received:
2013-03-21
Revised:
2013-09-05
Online:
2013-09-05
Published:
2013-09-06
Li Jie, Zhong Jie, Huang Jun, Zhao Xiao, Zhu Hongjian. Progress of Streptomycin-Resistance of Pathogenic Bacteria of Plant[J]. Biotechnology Bulletin, 2013, 0(9): 18-26.
[1] Sundin GW, Bender CL. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. Syringae[J]. Applied and Environmental Microbiology, 1993, 59:1018-1024. [2] Xie G, Wang H. Comparison of several bactericides against bacterial leaf streak of rice[J]. Journal of Zhejiang Agricultural Science, 1991, 5:233-235. [3] Zhu M, Ye D, Zhang Z, et al. Test on control effect of new zhimeisu and other pesticides medicament to principal diseases of rice[J]. Plant Protection, 1992, 18:26-27. [4] Rezzonico F, Stockwell VO, Duffy B. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes[J]. Antimicrob Agents Chemother, 2009, 53:3173-3177. [5] McManus PS, Stockwell VO, Sundin GW, et al. Antibiotic use in plant agriculture[J].Annu Rev Phytopathol, 2002, 40:443-465. [6] Davis J. Inactivation of antibiotics and the dissemination of resistance genes[J]. Science, 1994, 164:375-381. [7] Baquero F, Blazquez J. Evolution of antibiotic resistance[J].Trends Ecol Evol, 1997, 12:482-487. [8] Witte W. Medical consequences of antibiotic use in agriculture[J].Science, 1998, 279:996-997. [9] Li M. Determination of Pseudomonas syringae pv. tabaci resistance to agricultural streptomycin[J]. Chinese Agricultural Science Bulletin, 2007, 23:328-332. [10] Burr TJ, Norelli JL, Reid CL. Streptomycin-resistant bacteria associated with fire blight infections[J]. Plant Dis, 1993, 77:63-66. [11] Chiou CS, Jones AL. Expression and identifcation of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora[J]. Gene, 1995, 152:47-51. [12] Séveno NA, Kallifidas D, Smalla K. Occurrence and reservoirs of antibiotic resistance genes in the environment[J]. Reviews in Medical, 2002, 13(1):1-13. [13] Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century- a clinical super-challenge[J]. N Engl J Med, 2009, 360:439-443. [14] Duffy B, Sch?rer HJ, Bünter M, et al. Regulatory measures against Erwinia amylovora in Switzerland[J]. EPPO Bull, 2005, 35:239-244. [15] Springer B, Kidan YG, Prammananan T, et al. Mechanisms of streptomycin resistance:selection of mutations in the 16S rRNA gene conferring resistance[J]. Antimicrob Agents Chemother, 2001, 45:2877-2884. [16] Finken M, Kirschner P, Meier A, et al. Molecular basis of strepto-mycin resistance in Mycobacterium tuberculosis:alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot[J]. Molecular Microbiology, 1993, 9:1239-1246. [17] Chiou CS, Jones AL. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora[J]. Phytopathology, 1995, 85:324-328. [18] Zhang Y, Chen Y, Zhu XF, et al. A molecular mechanism of resis-tance to streptomycin in Xanthomonas oryzae pv. oryzicola[J]. Phytoparasitica, 2011, 39:393-401. [19] Riesenfeld C, Everett M, Piddock LJ, et al. Adaptive mutations produce resistance to ciprofloxacin[J]. Antimicrob Agents Che-mother, 1997, 41(9):2059-2060. [20] Rasheed JK, Jay C, Metchock B, et al. Evolution of extended-spect-rumβ-lactam resistance(SHV-8)in a strain of Escherichia coli during multiple episodes of bacteremia[J]. Antimicrob Agents Chemother, 1997, 41:647-653. [21] Sundin GW. Examination of base pair variants of the strA-strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants[J]. Journal of Antimicrobial Chemotherapy, 2000, 46:848-849. [22] Sundin GW. Distinct recent lineages of the strA-strB streptomycin-resistance genes in clinical and environmental bacteria[J]. Current Microbiology, 2002, 45:63-69. [23] Shaw KJ, Rather PN, Hare RS, et al. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside modifying enzymes[J]. Microbiol Rev, 1993, 57:138-163. [24] Sundin GW, Monks DE, Bender CL. Distribution of the streptomycin resistance transposon Tn5393 among phylloplane and soil bacteria from managed agricultural habitats[J]. Can J Microbiol, 1995, 41:792-799. [25] Palmer EL, Teviotdale BL, Jones AL. A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora[J]. Appl Environ Microbiol, 1997, 63:4604-4607. [26] Chiou CS, Jones AL. Nucleotide sequence analysis of a transposon(Tn5393)carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria[J]. J Bacteriol, 1993, 175:732-740. [27] Sundin GW, Bender CL. Expression of the strA-strB streptomycin resistance genes in pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris[J]. Appl Environ Microbiol, 1995, 61:2891-2897. [28] L’Abée-Lund TM, S?rum H. Functional Tn5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies salmonicida isolated in Norway[J]. Appl Environ Microbiol, 2000, 66(12):5533-5535. [29] Tauch A, Krieft S, Kalinowski J, et al. The 51, 409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens[J]. Mol Gen Genet, 2000, 263:1-11. [30] Mantengoli E, Rossolini GM. Tn5393d, a complex Tn5393 derivative carrying the PER-1 extended-spectrum β-lactamase gene and other resistance determinants[J]. Antimicrob Agents Chemother, 2005, 49(8):3289-3296. [31] Cain AK, Hall RM. Transposon Tn5393e carrying the aphA1-containing transposon Tn6023 upstream of strAB does not confer resistance to streptomycin[J]. Microb Drug Resist, 2011, 17:389-394. [32] Stokes HW, Elbourne LD, Hall RM. Tn1403, a multiple antibiotic resistance transposon made up of three distinct transposons[J]. Antimicrob Agents Chemother, 2007, 51:1827-1829. [33] Heuer H, Kopmann C, Binh CT, et al. Spreading antibiotic resistance through spread manure:characteristics of a novel plasmid type with low%G+C content[J]. Environ Microbiol, 2009, 11:937-949. [34] Fricke WF, McDermott PF, Mammel MK, et al. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry[J]. Appl Environ Microbiol, 2009, 75:5963-5971. [35] Frank KL, Bundle SF, Kresge ME, et al. aadA confers streptomycin resistance in Borrelia burgdorferi[J]. J Bacteriol, 2003, 185:6723-6727. [36] Sunde M, Norstr?m M. The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs[J]. J Antimicrob Chemother, 2005, 56:87-90. [37] Zhao S, White D, Ge B, et al. Identification and characterization of integron-mediated antibiotic resistance among shiga toxin-producing Escherichia coli isolates[J]. Appl Environ Microbiol, 2001, 67:1558-1564. [38] Moller W, Schroth M, Thompson SV. The scenario of fire blight and streptomycin resistance[J]. Plant Dis, 1981, 65:563-568. [39] Sundin GW, Demezas DH, Bender CL.Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides[J]. Appl Environ Microbiol, 1994, 60:4421-4431. [40] van Overbeek LS, Wellington EMH, Egan S, et al. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats[J]. FEMS Microbiology Ecology, 2002, 42:277-288. [41] D’Costa VM, McGrann KM, Hughes DW, et al. Sampling the antibiotic resistome[J]. Science, 2006, 311:374. [42] Dantas G, Sommer MOA, Oluwasegun RD, et al. Bacteria subsisting on antibiotics[J]. Science, 2008, 320:100-103. [43] D’Costa VM, Griffiths E, Wright GD. Expanding the soil antibiotic resistone:exploring environmental diversity[J]. Curr Opin Microbiol, 2007, 10:481-489. [44] Allen HK, Donato J, Wang HH, et al. Call of the wild:antibiotic resistance genes in natural environments[J]. Nat Rev Microbiol, 2010, 8:251-259. [45] Pramer D, Starkey RL. Decomposition of streptomycin[J]. Science, 1951, 113:127. [46] Schrag SJ, Perrot V. Reducing antibiotic resistance[J]. Nature, 1996, 381(6578):120-121. [47] Huang TC, Burr TJ. Characterization of plasmids that encode streptomycin-resistance in bacterial epiphytes of apple[J]. J Appl Microbiol, 1999, 86:741-751. [48] Han HS, Koh YJ, Hur JS, et al. Occurrence of the strA-strB strepto-mycin resistance genes in Pseudomonas species isolated from kiwi-fruit plants[J]. The Journal of Microbiology, 2004, 42:365-368. [49] Sundin GW, Bender CL. Relative fitness in vitro and in planta of Pseudomonas syringae containing copper and streptomycin resistance plasmids[J]. Can J Microbiol, 1994, 40:279-285. [50] Sesma A, Sundin GW, Murillo J. Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae[J]. Microbiology, 2000, 146:2375-2384. [51] Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria[J]. Proc Biol Sci, 2009, 276:2521-2530. [52] Tolba S, Egan S, Kallifidas D, et al. Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites[J]. FEMS Microbiology Ecology, 2002, 42:269-276. [53] De Boer SH. Leaf spot of cherry laurel caused by Pseudomonas syringae[J]. Can J Plant Pathol, 1980, 2:235-238. [54] Young JM. Resistance to streptomycin in Pseudomonas syringae from apricot[J]. NZ J Agric Res, 1977, 20:249-251. [55] Burr TJ, Norelli JL, Katz B, et al. Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid[J]. Phytopathology, 1988, 78:410-413. [56] Norelli JL, Burr TJ, Lo Cicero AM, et al. Homologous streptomycin resistance gene present among diverse gram-negative bacteria in New York State apple orchards[J]. Appl Environ Microbiol, 1991, 57:486-491. [57] Sobiczewski P, Chiou CS, Jones AL. Streptomycin-resistant epip-hytic bacteria with homologous DNA for streptomycin resistance in Michigan apple orchards[J]. Plant Dis, 1991, 75(11):1110-1113. [58] Parsley LC, Consuegra EJ, Kakirde KS, et al. Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage[J]. Appl Environ Microbiol, 2010, 76:3753-3757. [59] Shi R, Zhang JY, Li CY, et al. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by denaturing HPLC analysis and DNA sequencing[J]. Microbes and Infection, 2007, 9:1538-1544. [60] Volkmann H, Schwartz T, Bischoff P, et al. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR(TaqMan?)[J]. J Microbiol Methods, 2004, 56:277-286. [61] Volkmann H, Schwartz T, Kirchen S, et al. Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets[J]. Mol Cell Probes, 2007, 21:125-133. [62] Borjesson S, Dienues O, Jarnheimer PA, et al. Quantification of genes encoding resistance to aminoglycosides, β-lactams and tetracyclines in wastewater environments by real-time PCR[J]. Intl J Environ Health Res, 2009, 19:219-230. [63] Knapp CW, Engemann CA, Hanson ML, et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures[J]. Environ Sci Technol, 2008, 42:5348-5353. [64] Koike S, Krapac IG, Oliver HD, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period[J]. Appl Environ Microbiol, 2007, 73:4813-4823. [65] Pruden A, Pei RT, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J]. Environ Sci Technol, 2006, 40:7445-7450. [66] Smith MS, Yang RK, Knapp CW, et al. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR[J]. Appl Environ Microbiol, 2004, 70:7372-7377. [67] Walsh F, Ingenfeld A, Zampicolli M, et al. Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems[J]. Journal of Microbiological Methods, 2011, 86:150-155. [68] Stoczko M, Frere JM, Rossolini GM, et al. Postgenomic scan of metallo-β-lactamase homologues in rhizobacteria:identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum[J]. Antimicrob Agents Chemother, 2006, 50:1973-1981 . [69] Schnabel EL, Jones AL. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards[J]. Appl Environ Microbiol, 1999, 65:4898-4907. [70] Loper JE, Henkels MD, Roberts RG, et al. Evaluation of streptom-ycin, oxytetracycline, and copper resistance in Erwinia amylovora isolated from pear orchards in Washington State[J]. Plant Dis, 1991, 75:287-290. [71] Pohronezny K, Sommerfeld ML, Raid RN. Streptomycin resistance and copper tolerance among strains of Pseudomonas cichorii in celery seedbeds[J]. Plant Dis, 1994, 78:150-153. [72] Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance[J]. Curr Opin Microbiol, 2010, 13(5):632-639. [73] Binh CT, Heuer H, Kaupenjohann M, et al. Piggerymanure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids[J]. FEMS Microbiology Ecology, 2008, 66:25-37. [74] G?tz A, Smalla K. Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil[J]. Appl Environ Microbiol, 1997, 63:1980-1986. [75] Heuer H, Fox RE, Top EM. Frequent conjugative transfer accelera-tes adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host[J]. FEMS Microbiol Ecol, 2007, 59:738-748. [76] Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J].Current Opinion in Microbiology, 2011, 14:236-243. [77] Shelver WL, Hakk H, Larsen GL, et al. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities[J]. J Chromatogr A, 2010, 1217:1273-1282. [78] Hamscher G, Pawelzick HT, Hoper H, et al. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure[J]. Environ Toxicol Chem, 2005, 24:861-868. [79] Halling-S?rensen B, Jacobsen AM, Jensen J, et al. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils:a field-scale study in southern Denmark[J]. Environ Toxicol Chem, 2005, 24:802-810. [80] Srinivasan V, Nam HM, Sawant AA, et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Entero-bacteriaceae isolated from dairy and nondairy farm soils[J]. Microbial Ecology, 2008, 55:184-193. [81] Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. J Environ Qual, 2007, 36:1224-1230. [82] Russo NL, Burr TJ, Breth DI, et al. Isolation of streptomycin resistant isolates of Erwinia amylovora in New York[J]. Plant Dis, 2008, 92:714-718. [83] Johnsen PJ, Townsend JP, B?hn T, et al. Factors affecting the reversal of antimicrobial-drug resistance[J]. Lancet Infect Dis, 2009, 9:357-364. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||