新型GH5家族多结构域纤维素酶的结构与功能研究
Structure and Function Analysis of Novel GH5 Multi-domain Cellulase
Received: 2022-05-24
作者简介 About authors
杨俊钊,女,硕士研究生,研究方向:资源环境微生物学;E-mail:
纤维素酶能够将纤维素转化为可发酵的糖类,为丰富纤维素酶的序列与结构资源、揭示纤维素酶结构与功能之间的关系,本研究对两个新型GH5家族多结构域内切纤维素酶TlCel5和ReCel5进行了克隆表达和酶学性质测定,并对其结构域开展了突变研究。序列和结构分析显示,Tlcel5和Recel5分别编码了655个和632个氨基酸,理论分子量分别为68.3 kD和65.9 kD,均包含了CBM1区、CD区、CBMX2区和一个未知结构域,这与以往报道的多数单一结构域或双结构域纤维素酶显著不同。为了解附加结构域对酶功能的影响效果,以ReCel5为研究对象,分别构建了N端CBM1结构域的截断突变体TM1,和C端未知结构域的截断突变体TM2。酶学性质分析显示,TlCel5和ReCel5的最适作用pH和最适作用温度分别为pH 3.0、50℃和pH 4.0、70℃,在50℃和70℃下能够保持良好的稳定性,并且对多种类型的纤维素类底物、半纤维素类底物表现出水解能力。虽然突变体TM1和TM2的酶学性质较野生型没有发生显著变化,但其对羧甲基纤维素钠、大麦葡聚糖、地衣多糖的水解比活值降低了23%-68%,由此说明,在多结构域酶中,附加结构域与酶的水解能力之间存在密切关系。
关键词:
Cellulase can convert cellulose into fermentable sugars. In order to enrich the sequences and structure resources of cellulase and reveal the relationship between cellulase structure and function, two novel multi-domain endoglucanases belonging to glycosyl hydrolases(GH)family 5 TlCel5 and ReCel5 were cloned and expressed. Their enzymatic properties were determined and the mutation of structure domain was studied. Sequence and structure analysis showed that Tlcel5 and Recel5 encoded 655-residue and 632-residue polypeptides with theoretical molecular weights of 68.3 kD and 65.9 kD respectively. They wee both multi-domain cellulases, comprising a carbohydrate-binding module grouped into family 1(CBM1)and a catalytic module of family 5 glycoside hydrolase(CD)at N-terminal, a family X2 carbohydrate binding module(CBMX2)and an unknown domain(UM)at the C-terminal, which made them significantly different from most single-domain or dual-domain cellulases reported previously. With the purpose of understanding the effect of additional domains on enzyme function, the truncated mutant without the N-terminal CBM1 domain(TM1)and the truncated mutant without the C-terminal unknown domain(TM2)were constructed based on wild-type ReCel5. The assays of enzymatic properties demonstrated that the optimal pH and temperature of TlCel5 and ReCel5 were pH 3.0, 50℃ and pH 4.0, 70℃, respectively. They remained fine stability at 50℃ and 70℃, and showed certain hydrolytic ability to a variety of cellulose and hemicellulose substrates. Their hydrolysis specific viabilities to sodium carboxymethyl cellulose, barley β-glucan, and lichenan reduced by 23% to 68% although the enzymatic properties of TM1 and TM2 did not change significantly compared with the wild-type proteins. These results suggested that there was a close relationship between the additional domains and the hydrolysis ability of multi-domain enzymes.
Keywords:
本文引用格式
杨俊钊, 张新蕊, 赵国柱, 郑菲.
YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei.
纤维素是自然界分布较广、含量最为丰富的一类可再生资源,由葡萄糖通过β-1,4-糖苷键连接而成。纤维素酶是纤维素有效利用的关键因素,目前应用于食品、畜牧、医药、纺织和生物质能源等多个领域[1]。对纤维素的降解主要依赖β-1,4内切葡聚糖酶、纤维二糖水解酶、β-葡萄糖苷酶3种纤维素酶的协同作用共同完成[2]。其中,β-1,4内切葡聚糖酶(内切纤维素酶)主要攻击纤维素的无定形区,可以在纤维素链的内部随机切割,产生短链寡糖。根据碳水化合物活性酶数据库CAZY(
GH5家族内切纤维素酶主要包含两种构型:(1)仅具有单一的催化结构域(catalysis domain, CD);(2)在催化结构域的N端或者C端存在一个碳水化合物结合结构域(carbohydrate binding module, CBM),CD区和CBM区通过一段高度糖基化的linker区连接起来。GH5家族内切纤维素酶的CD区呈现典型的(β/α)8-TIM桶状折叠结构,桶的外围和内壁分别由8个α-螺旋和8个β-折叠片组成,其催化活性中心呈开放式裂隙,催化口袋周围分布着与酶催化密切相关的氨基酸残基。CBM结构域在进化上呈现多样性。根据序列的相似性,CBM目前分布在90个不同的家族中,其中真菌源蛋白的CBM主要分布在CBM1家族内。
根据文献报道,CBM的功能主要是参与酶与底物的结合过程[3]。有研究显示,将外切纤维素酶CtCBH位于N端的CBM1删除后,其对羧甲基纤维素钠(CMC-Na)的催化活性提高了46%,推测这可能是由于CBM的缺失使催化域更容易在可溶性底物上迁移[4];将木聚糖酶的CBM1截断后,导致突变体PspXyn10ΔCBM对可溶性木聚糖的活性增加,但其对碱预处理甘蔗渣的糖化效率降低。这一结果表明CBM1结构域有助于纤维素的糖化[5]。此外,CBM在结合不可溶性纤维素的过程中也扮演重要角色。例如,研究人员将来源于Trichoderma reesei的纤维素酶CBHI中典型的CBM1分别单独添加和重复添加至单一结构域的CSCMCase酶的C端,获得的突变体全部可以与高浓度的微晶纤维素相结合,而野生型的结合率为0[6]。由此可见,CBM对于酶结合底物的类型、吸附力的强弱等均具有重要作用。
本研究以Talaromyces leycettanus JCM12802和Rasamsonia emersonii CBS393.64为出发菌株,从其基因组中挖掘出两个多模块GH5内切纤维素酶TlCel5和ReCel5的编码基因Tlcel5和Recel5,利用毕赤酵母作为表达宿主,获得蛋白后对其酶学性质进行研究,发现其对多种纤维素、半纤维素类底物均具有活性,丰富了内切纤维素酶的资源数据库。此外,通过在ReCel5上构建截断突变体TM1和TM2,分别探究了N端和C端附加结构域对酶功能的影响,为酶分子的改良工作提供理论参考。
1 材料与方法
1.1 材料
1.1.1 菌种和质粒
T. leycettanus JCM12802菌株来源于日本JCM菌种库,TlCel5与ReCel5基因编码序列由北京睿博兴科生物技术有限公司合成,表达质粒pPIC9和表达宿主毕赤酵母Pichia pastoris GS115均购于美国Invitrogen生命技术有限公司。克隆宿主大肠杆菌感受态细胞Escherichia coli(Trans1-T1)购自北京全式金生物技术有限公司。
1.1.2 主要试剂和仪器
无缝克隆与重组试剂盒、快速凝胶提取试剂盒购自北京全式金生物技术有限公司,质粒提取试剂盒购自天根生化科技(北京)有限公司,氨苄青霉素钠购自北京索莱宝科技有限公司,胰蛋白胨、酵母浸粉均购自赛默飞世尔科技公司,琼脂糖购自Biowest公司、YNB购自北京兰博利德生物技术有限公司,D-无水葡萄糖和琼脂粉均购自博奥拓科技有限公司。
摇床,DHZ-DA全温大容量恒温振荡器;电转仪,美国Bio-Rad;培养箱,一恒Blue pard经济型生化培养箱;高速冷冻离心机,美国贝克曼库尔特;蛋白纯化,ÄKTA Pure;NanoDrop2000超微量分光光度计;调速型蠕动泵购自北京杰诚永兴科技有限公司。
1.2 方法
1.2.1 序列分析
使用ExPASy-ProtParam tool(
1.2.2 质粒构建与提取
将目的基因Tlcel5和Recel5重组至pPIC9表达质粒EcoR I/Not I克隆位点处,利用热激法转化至Trans1-T1细胞中,后涂布于固体LB培养基上,37℃倒置培养。12 h后挑取单克隆进行菌落PCR验证并送测序,后将测序正确的克隆子进行培养、质粒提取。突变体TM1、TM2的构建分别以Recel5为模板,利用overlap PCR方法获得突变体基因的全长。质粒提取方法同Tlcel5和Recel5。
1.2.3 蛋白在毕赤酵母中的表达与蛋白纯化
使用Dra I限制性内切酶将重组质粒pPIC9-Tlcel5和pPIC9-Recel5进行线性化,电击转化至毕赤酵母GS115感受态细胞中,涂布在固体MD(1.5%(W/V)琼脂糖,2%(W/V)葡萄糖,1.34%(W/V)YNB,4×10-4%(W/V)生物素)培养基上,30℃倒置培养48 h后筛选重组转化子。参照孔海洋等[7]的方法,将筛选出的阳性克隆子接种至YPD液体培养基中,30℃,200 r/min培养48 h后,以0.5%(V/V)的接种量接种至BMGY液体培养基中,30℃,200 r/min培养48 h,后收集菌体转移至BMMY诱导培养基中,30℃,200 r/min继续诱导培养48 h,每隔24 h补加一次甲醇(0.5%,V/V)。48 h后收集上清液,利用10 kD膜包浓缩至15 mL体积后进行脱盐处理,然后利用阴离子交换层析柱进行纯化。
1.2.4 纤维素酶酶活的测定
利用DNS法测定纤维素酶的酶活性。反应体系包含450 μL底物和50 μL稀释后的酶液,在最适条件下反应10 min后向体系中加入750 μL的DNS试剂终止反应,然后在沸水浴中加热5 min,冷却至室温,在540 nm下测定其吸光值,每组实验设置3个生物学重复。一个单位的酶活性(U)定义为1 min释放1 µmol葡萄糖当量的还原糖所需的酶量。
1.2.5 酶学性质分析
1.2.5.1 最适pH和pH稳定性的测定
将酶和底物(10 mg/mL羧甲基纤维素钠)分别用不同pH的缓冲液(pH 1.0-2.0:100 mmol/L甘氨酸-盐酸;pH 3.0-7.0:100 mmol/L柠檬酸-磷酸氢二钠;pH 8.0-9.0:100 mmol/L Tris-盐酸;pH 10.0-12.0:100 mmol/L甘氨酸-氢氧化钠)进行稀释,测定各pH条件下的剩余酶活力,以酶活最高的pH条件下的酶活值作为100%绘制最适pH趋势图。分别用pH 1.0-12.0缓冲液稀释酶液,然后在37℃条件下孵育1 h后测定TlCel5和ReCel5的酶活力,以酶活力最高点作为100%计算各pH条件下的相对酶活值,绘制pH稳定性趋势图。
1.2.5.2 最适温度和温度稳定性的测定
选择10 mg/mL羧甲基纤维素钠作为底物,温度范围设定为30-90℃,TlCel5和ReCel5分别在最适pH条件下测定最适温度。将TlCel5和ReCel5分别在50、60和70℃下孵育2、5、10、30和60 min后,在最适条件下测定酶活力,以未处理酶液的酶活值作为100%,计算各时间点和温度点下的相对酶活值并绘制温度稳定性趋势图。
1.2.5.3 比活值测定
以450 μL的10 mg/mL大麦葡聚糖、10 mg/mL地衣多糖、10 mg/mL羧甲基纤维素钠为底物,分别向其中加入50 μL的酶液TlCel5和ReCel5,在最适条件下(TlCel5:50℃,pH 3.0;ReCel5:70℃,pH 4.0)反应10 min,测定酶的比活值。
1.2.5.4 动力学参数测定
以不同浓度的羧甲基纤维素钠(1、3、5、7、9、11、13和15 mg/mL)作为底物,反应体系包含450 μL的底物和50 μL的TlCel5和ReCel5酶液,反应时长为5 min。利用双倒数作图法,计算酶促动力学参数Vmax、Km、kcat以及kcat/Km值。
2 结果
2.1 序列与结构特征
来源于T. leycettanus JCM12802的GH5内切纤维素酶编码基因Tlcel5,其核苷酸序列全长为2 411 bp,CDS长度为1 965 bp。经预测,Tlcel5共包含7个内含子,编码了655个氨基酸和一个终止密码子。经SignalP-5.0在线预测后发现TlCel5前18个氨基酸为信号肽序列。经ExPASy-ProtParam tool分析得到TlCel5理论分子量为68.3 kD,等电点为4.66。
来源于R.emersonii CBS 393.64的基因Recel5也编码了一个GH5家族内切纤维素酶。经分析ReCel5包含632个氨基酸和一个终止密码子,其中前20个氨基酸为蛋白的信号肽序列。经ExPASy-ProtParam tool分析得到ReCel5理论分子量为65.9 kD,等电点为4.54。
综合比较发现,TlCel5和ReCel5的氨基酸序列一致性为71.6%,分别包含了4个不同的结构域,如图1所示,从蛋白的N端到C端分别为碳水化合物结合结构域CBM1、核心催化域CD区、碳水化合物结合结构域CBMX2、未知结构域UM。
图1
图1
TlCel5、ReCel5、TM1和TM2编码蛋白质结构示意图
SP:信号肽;CBM:碳水化合物结合模块;CD:催化结构域;UM:未知结构域
Fig. 1
Schematic diagram of protein structure encoded by TlCel5, ReCel5, TM1 and TM2
SP: Signal peptide. CBM: Carbohydrate binding module. CD: Catalysis domain. UM: Unknown module
TM1和TM2突变体的构建如图1所示。TM1为ReCel5截断N端CBM1区,共包含578个氨基酸编码序列和一个终止密码子,理论分子量为62.4 kD;TM2为ReCel5截断C端未知结构域,其包含494个氨基酸编码序列和一个终止密码子,理论分子量为53.1 kD。
将TlCel5和ReCel5催化结构域氨基酸序列与GH5家族真菌源内切纤维素酶的催化结构域氨基酸序列进行多序列比对,结果如图2所示。据文献报道,GH5内切纤维素酶催化结构域中存在9个保守残基,以来源于丝状真菌红褐肉座菌(Hypocrea jecorina)Hj_Cel5A为例,其保守残基为R60、H104、N147、E148、H218、Y220、E259、W292和一个相对保守的T258(或G)(图2黑色箭头标注)。其中,E148、E259分别充当活性位点的催化碱基和亲核试剂。经比对发现,TlCel5的催化残基为E257和E369,ReCel5的催化残基为E234和E346。但是在TlCel5和ReCel5中有两个保守残基发生改变,TlCel5中为Y325(Hj_Cel5A_H218)、P327(Hj_Cel5A_Y220),ReCel5中为Y302(Hj_Cel5A_H218)、P304(Hj_Cel5A_Y220)。
图2
图2
GH5家族内切纤维素酶催化结构域氨基酸序列对比图
保守残基由向下箭头所标记。比对序列的菌株来源及登录号分别为:H. jecorina(AEJ36301.1), R. emersonii CBS 393.64(XP_013323622.1), Aspergillus neoniger CBS 115656(XP_025478804.1), Thermoascus aurantiacus(AAL88714.2), Stegonsporium opalus(ARO48344.1), Ganoderma lucidum(QDK64599.1), Trichoderma reesei(P07982.1), and Gloeophyllum trabeum ATCC 11539(XP_007867902.1)
Fig. 2
Amino acids sequence alignment in the catalytic domain of GH5 family endoglucanases
The conservative residues are labeled in the arrow below the alignment. The strain source and GenBank number of the alignment sequence are H. jecorina(AEJ36301.1), R. emersonii CBS 393.64(XP_013323622.1), A. neoniger CBS 115656(XP_025478804.1), T. aurantiacus(AAL88714.2), S. opalus(ARO48344.1), G. lucidum(QDK64599.1), T. reesei(P07982.1), and G. trabeum ATCC 11539(XP_007867902.1)
2.2 重组酶的表达与酶学性质
以毕赤酵母GS115作为表达宿主,经纯化后,获得TlCel5、ReCel5、TM1和TM2的重组蛋白,结果如图3所示。野生型TlCel5、ReCel5突变体TM1和TM2的理论分子量分别为68.3 kD、65.9 kD和62.4 kD、53.1 kD,均小于其表观分子量。经http://www.cbs.dtu.dk/services/NetNGlyc/预测发现,TlCel5和ReCel5分别包含了5个和8个N糖基化位点,突变体TM1和TM2分别包含8个和6个N糖基化位点,推测是导致蛋白的表观分子量大于其理论分子量的主要原因。
图3
图3
野生型TlCel5、ReCel5和突变体TM1、TM2的SDS-PAGE分析
M:蛋白分子质量标准; A:野生型TlCel5、ReCel5的表达(1:ReCel5纯化蛋白;2:TlCel5纯化蛋白); B:突变体TM1、TM2的表达(3:突变体TM1纯化蛋白;4:突变体TM2纯化蛋白)
Fig. 3
SDS-PAGE analysis of wild-type TlCel5, ReCel5 and mutant TM1, TM2
M: Protein molecular weight standard. A: Expression of wile-type TlCel5、ReCel5(1: purified protein of ReCel5; 2: purified protein of TlCel5). B: Expressions of mutants TM1 and TM2(3: purified protein of TM1; 4: purified protein of TM2)
图4
图4
野生型TlCel5、ReCel5及突变体TM1、TM2的酶学性质图
A:最适pH;B:pH稳定性;C:最适温度;D:50℃下温度稳定性;E:60℃下温度稳定性;F:70℃下温度稳定性
Fig. 4
Enzymatic properties of wild-type TlCel5, ReCel5 and mutant TM1, TM2
A: pH-activity profile. B: pH stability. C: Temperature-activity profile. D: Thermostability at 50℃. E: Thermostability at 60℃. F: Thermostability at 70℃
2.3 重组酶的比活值
分别以羧甲基纤维素钠、大麦葡聚糖、地衣多糖、魔芋粉、木聚糖作为底物,测定TlCel5、ReCel5的比活值。如图5所示,TlCel5和ReCel5水解羧甲基纤维素钠的比活值分别为(256±5)U/mg和(92±3)U/mg;水解大麦葡聚糖的比活值分别为(133±2)U/mg和(111 ±5)U/mg;水解地衣多糖的比活值分别为(94±13)U/mg和(121±8)U/mg;水解魔芋粉的比活值分别为(26±2)U/mg和(33±2)U/mg。此外,TlCel5和ReCel5对半纤维素类的底物也具有水解能力,二者对木聚糖的水解比活值分别为(5.6±0.8)U/mg和(3.8±0.4)U/mg。当以角豆胶、微晶纤维素和磷酸膨胀纤维素为底物时,在40℃下孵育12 h后,TlCel5和ReCel5的ΔOD值较低,分别为0.221 5、0.641 1、0.395 8和0.167 2、0.499 8、0.278 3,也说明二者对上述三类底物具有一定的水解能力。
图5
图5
野生型TlCel5、ReCel5及突变体TM1、TM2的比活值
Fig. 5
Specific viability of wild-type TlCel5, ReCel5 and mutant TM1, TM2
进一步分析发现,TM1对羧甲基纤维素钠、大麦葡聚糖、地衣多糖的水解比活值分别为(40±2)U/mg、(85±1)U/mg、(88±3)U/mg,较野生型分别降低了约56%、23%和27%;TM2对上述3种底物的水解比活值分别为(29±1)U/mg、(53±2)U/mg、(88±2)U/mg,较野生型分别降低了约68%、52%和27%。当以魔芋粉和木聚糖为底物时,TM1和TM2均未检测到相关活性。由此说明,N端CBM1结构域和C结构域在酶水解底物的过程中发挥着重要作用。
2.4 重组酶的动力学常数
以羧甲基纤维素钠作为测量酶促反应动力学的底物,由表1的数据可知,TlCel5和ReCel5的Km值分别为(7.5±1.0)mg/mL和(8.6±0.2)mg/mL,Vmax分别为(217±20)μmol/(min·mg)和(56±0.9)μmol/(min·mg),kcat分别为(247.0±22.0)/s和(61.4±0.9)/s,kcat/Km分别为(32.5±1.5)mL/(mg·s)和(7.1±0.1)mL/(mg·s)。突变体TM1、TM2的Km值均为(8.4±0.1)mg/mL。催化效率kcat/Km的值分别为(8.4±0.1)mL/(mg·s)和(8.1±0.1)mL/(mg·s)。
表1 野生型TlCel5、ReCel5及突变体TM1、TM2的酶促反应动力学参数
Table 1
| Enzyme | Vmax/(mmol·min-1·mg-1) | Km/(mg·mL-1) | kcat/(s-1) | kcat/Km(mL·mg-1·s-1) |
|---|---|---|---|---|
| TlCel5 | 217.0±20.0 | 7.5±1.0 | 247.0±22.0 | 32.8±1.5 |
| ReCel5 | 56.0±0.9 | 8.6±0.2 | 61.4±0.9 | 7.1±0.1 |
| TM1 | 68.0±0.5 | 8.4±0.1 | 70.7±0.6 | 8.4±0.1 |
| TM2 | 76.9±0.7 | 8.4±0.1 | 68.1±0.6 | 8.1±0.1 |
3 讨论
目前已报道的糖苷水解酶第5家族的β-1,4内切纤维素酶中,大多只包含一个催化结构域或者在催化结构域的N/C端存在一个碳水化合物结合结构域CBM区,多结构域的纤维素酶在5家族中并不常见。本文报道了两个新型多结构域GH5纤维素酶TlCel5和ReCel5,成功进行了异源表达和酶学性质探究。此外,通过在ReCel5上构建N端CBM1结构域截断突变体TM1和C端未知结构域截断突变体TM2,探究附加结构域在多模块酶中的作用,为多结构域酶的研究奠定了基础。
GH5家族的内切纤维素酶大多为弱酸性和中温酶,即最适作用pH在4.0-6.0、最适作用温度在40-60℃的范围内(表2)。本研究中的ReCel5最适温度为70℃,在70℃下处理1 h后的仍能剩余70%以上的酶活力,与多数GH5家族纤维素酶相比,稳定性良好。此外,TlCel5和ReCel5在底物特异性方面也表现出较好的广泛性,不仅能够水解羧甲基纤维素钠、大麦葡聚糖等纤维素类的优势底物,对木聚糖、角豆胶等半纤维素物质也具有一定的水解能力,这可能与其多结构域特征存在密切关系。
表2 GH5家族真菌源内切纤维素酶最适条件表
Table 2
| Name | Optimal pH | Optimal temperature /℃ | Source | Reference |
|---|---|---|---|---|
| TlCel5 | 3.0 | 50 | T. leycettanus | This study |
| ReCel5 | 4.0 | 70 | R. emersonii | This study |
| GlCel5A | 3.0-4.0 | 60 | Ganoderma lucidum | [8] |
| TaCel5A | 6.0 | 50 | Thermoascus aurantiacusIFO9748 | [9] |
| Epi3 | 6.5-7.0 | 50 | Epidinium caudatum | [10] |
| PdCel5C | 4.8 | 40-50 | Penicillium decumbens 114-2 | [11] |
| BaCel5 | 5.0 | 50 | Bispora antennata | [12] |
| SoCel5 | 5.0 | 60 | Stegonsporium opalus | [13] |
目前仅有一个GH5家族多结构域纤维素酶被报道,即来源于青霉菌(Penicillium decumbens)的PdCel5C,其结构中也包含了一个CBM1结构域、一个CD区、一个CBMX2结构域和一个CBMX2-like结构域[11]。TlCel5、ReCel5与PdCel5C的氨基酸全长序列一致性分别为71.3%和66.4%。研究显示,PdCel5C的C端两个结构域主要由β-折叠片组成,整体截断C端两个结构域显著影响了酶对底物的水解效率,说明C端两个结构域的存在对于酶活性起到重要作用,但在PdCel5C的研究中,并未对C末端的CBMX2-like结构域进行独立研究,因此其对酶功能的影响并未有相关报道。ReCel5的C端未知结构域与PdCel5C的CBMX2-like结构域的相似度为71.2%,其对酶功能的影响有待深入探究。本研究以ReCel5为材料,构建了C端未知结构域的截断突变体TM2,并成功进行表达。经分析,TM2对羧甲基纤维素钠、大麦葡聚糖等多种底物的比活值显著降低,说明其对酶的水解能力起到关键作用。
TlCel5和ReCel5除包含C端的CBMX2结构域和未知结构域之外,其N端还存在一个CBM1结构域。CBM是非催化结构域,可与纤维素或者其他多糖类底物结合[2]。在本研究中,为了探究CBM对酶功能的影响,在ReCel5上构建了N端CBM1缺失突变体TM1。经分析,TM1对多种纤维素类底物的水解活性较野生型均有显著的降低,降低幅度为27%-56%,而对酶的酶学性质没有显著影响,由此说明,CBM结构域在ReCel5水解纤维素的过程中也发挥着重要作用,这与之前报道的大多数CBM的功能相一致[14-15]。此外,TlCel5和ReCel5的CBM1分别包含了36个和34个氨基酸,与T. reesei CBHI中的CBM1序列高度相似[16-17]。在早期的研究中发现,CBM1主要是通过序列中所包含的芳香族残基来影响酶与底物之间的结合效率[18-19]。在TlCel5和ReCel5的CBM1序列中,存在多数其他CBM1中也包含的4个保守的芳香族残基(图6红色五角星标注),可以与底物之间形成稳固的疏水堆积力,促进酶与底物的结合与水解。然而,进一步分析发现,在TlCel5中,4个芳香族残基分别为W23、Y31、W49、Y50,而在ReCel5中,4个芳香族残基则为Y23、Y31、Y49、Y50。虽然均为芳香族残基,但其疏水堆积力强度存在差异,因此可能导致CBM1与糖环之间的结合力强弱不同。有研究显示将T. reesei CBHI中CBM1的Y5突变成W,发现Y5W突变体对纤维素的亲和力显著提高,这主要是由于色氨酸R集团的平面胍基和吲哚基可以与底物堆叠,所以色氨酸的侧链疏水性强于酪氨酸[20],因此导致Y5W突变体对底物的结合力更强[21]。此外,芳香族残基的数量与酶和底物的结合力强弱也存在相关性[22-23]。例如,来源于木聚糖酶(Xyn10B)的CBM1除了具有上述4个保守芳香族残基(W-F-Y-Y)外,还额外进化出了两个新的芳香族位点,通过定点突变研究证明,多出的酪氨酸Y对于增强酶与纤维素的结合能力具有重要作用[23]。结合TlCel5和ReCel5来看,二者CBM1中也进化出了更多数量的芳香族残基,形成了W-Y-F-Y-W-Y-Y(TlCel5)和Y-Y-Y-Y-Y-Y(ReCel5)的组成模式。由此我们推测,TlCel5和ReCel5在CBM1芳香族残基类型与数量上的差异,可能是导致TlCel5的Km值小于ReCel5,对底物的亲和力大于ReCel5的主要原因。此外,TlCel5和ReCel5的CBM1序列上还包含了4个半胱氨酸(图6黑色五角星标注),可以形成二硫键,二硫键作为一种共价键其键能大于氢键、盐桥、范德华力等次级键,因此对于稳定酶的结构也具有重要作用。
图6
图6
纤维素酶CBM1序列比对
比对序列的纤维素酶名称、来源菌株及登录号分别为:ReCel5(R.emersonii CBS 393.64, XP_013323622.1), TrCel7A(T. reesei, CAH10320.1), TrCel7B(T. reesei, AAA34212.1), PdCel5C(P. decumbens, JQ319040.1), TrCel5C(T. reesei, AAA34213.1), ApCel5A(Aureobasidium pullulans, AEM23896.1)
Fig. 6
Sequence alignment of CBM1 domain of cellulose
The cellulase name, source strain and GenBank number of the alignment sequence are ReCel5(R. emersonii CBS 393.64, XP_013323622.1), TrCel7A(T. reesei, CAH10320.1), TrCel7B(T. reesei, AAA34212.1), PdCel5C(P. decumbens, JQ319040.1), TrCel5C(T. reesei, AAA34213.1), ApCel5A(Aureobasidium pullulans, AEM23896.1)
4 结论
TlCel5和ReCel5代表着一类结构独特的内切纤维素酶,虽然TlCel5和ReCel5在序列和结构上高度相似,但是其催化效率、最适作用条件及酶的稳定性都存在着显著差别,这可能与其序列进化的差异性有重要关系。通过在ReCel5上构建截断CBM1和未知结构域的突变体TM1和TM2,初步探究了非催化附加结构域对酶功能的影响,为获得具有优良性质的酶提供了分子改造思路。
参考文献
纤维素酶应用研究的最新进展
[J].
The recent application progress cellulase
[J].
Improving cellulases hydrolytic action: an expanded role for electron donors of lytic polysaccharide monooxygenases in cellulose saccharification
[J].DOI:10.1016/j.biortech.2021.126662 URL [本文引用: 2]
Carbohydrate binding modules: diversity of domain architecture in amylases and cellulases from filamentous microorganisms
[J].DOI:10.3389/fbioe.2020.00871 URL [本文引用: 1]
Effect of carbohydrate binding modules alterations on catalytic activity of glycoside hydrolase family 6 exoglucanase from Chaetomium thermophilum to cellulose
[J].DOI:10.1016/j.ijbiomac.2021.09.002 URL [本文引用: 1]
A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase
[J].
DOI:10.1186/s13068-017-0970-2
PMID:29201142
[本文引用: 1]
Background: Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei.Results: Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydratebinding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 degrees C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 degrees C for 10 min. With beechwood xylan as the substrate, the enzyme had a K-m of 2.2 mg/mL and a V-max of 332 mu mol/min/mg. PspXyn10 Delta CBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10 Delta CBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus beta-glucosidase-expressing T. reesei PC-3-7. X2PX10 also expressed PspXyn10 under the control of the xyn2 promoter. An enzyme preparation from X2PX10 showed almost the same saccharification efficiency of alkaline-pretreated bagasse at half the enzyme dosage as that used for an enzyme preparation from X3AB1.Conclusions: Our results suggest that PspXyn10 promotes the saccharification of alkaline-pretreated bagasse more efficiently than TrXyn3, a GH10 family xylanase from T. reesei, and that the PspXyn10-expressing strain is suitable for enzyme production for biomass saccharification.
Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates
[J].DOI:10.1016/j.enzmictec.2013.02.002 URL [本文引用: 1]
β-甘露聚糖酶Man5A和木聚糖酶Tlxyn11B的融合表达
[J].
Fusion expression of β-mannanase Man5A and xylanase Tlxyn11B in Pichia pastoris
[J].
Functional and structural analyses of a 1, 4-β-endoglucanase from Ganoderma lucidum
[J].DOI:10.1016/j.enzmictec.2016.01.013 URL [本文引用: 1]
Cloning of a gene encoding a thermo-stable endo-beta-1, 4-glucanase from Thermoascus aurantiacus and its expression in yeast
[J].DOI:10.1023/A:1023072311980 URL [本文引用: 1]
Molecular cloning, expression, and characterization of an endo-beta-1, 4-glucanase cDNA from Epidinium caudatum1
[J].An endo-beta-1,4-glucanase gene (epi3) from the rumen ciliated protozoan Epidinium caudatum was cloned from a cDNA library constructed by using the lambda ZAP II vector. The enzymatic activity of the gene product was detected by the Congo red assay, using carboxymethyl cellulose (CMC) as substrate. The nucleotide sequence of epi3 revealed 1,253 nucleotides with an open reading frame for a protein (Epi3) of 356 amino acids (Mr -41,014). Epi3 shows high homology with family 5 endoglucanase genes and with genes from protozoa isolated from sources other than the rumen. The specific activity of Epi3 produced in Escherichia coli was 5.544, 2.754, and 0.295 mmol of glucose min(-1) mg(-1) protein when the substrates used were CMC, beta-glucan, and xylan, respectively. A beta-1,4-linked trisaccharide of glucose was the preferred substrate of Epi3, as determined by analysis with the p-nitrophenyl form of the substrate. To our knowledge, this is the first report of the isolation of an endoglucanase gene from a rumen protozoan.
An endo-1, 4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile
[J].DOI:10.1016/j.enzmictec.2012.12.009 URL [本文引用: 2]
Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure
[J].DOI:10.1016/j.biortech.2016.06.094 URL [本文引用: 1]
Activity and thermostability of GH5 endoglucanase chimeras from mesophilic and thermophilic parents
[J].
Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose
[J].DOI:10.1186/s13068-015-0259-2 URL [本文引用: 1]
Carbohydrate-binding modules(CBMs)revisited: reduced amount of water counterbalances the need for CBMs
[J].
DOI:10.1186/1754-6834-6-30
PMID:23442543
[本文引用: 1]
Background: A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose?;Results: The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin.;Conclusions: Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.
A binding-site-deficient, catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei
[J].From the culture filtrate of Trichoderma reesei we have isolated a novel endoglucanase (38 kDa) which was shown to be identical to endoglucanase III (E III, 50 kDa), but lacking the first 61 N-terminal amino acids. This core protein, designated E III core, is fully active against soluble substrates, such as carboxymethylcellulose, whereas both activity against and adsorption to microcrystalline cellulose (Avicel) is markedly decreased. Sedimentation velocity experiments revealed that the intact E III enzyme has much higher asymmetry than the E III core protein, suggesting that the N-terminal region split off constitutes a protruding part of the native enzyme. These results lead to the proposal that native E III consists of two functionally separated domains: a catalytically active core and a protruding N-terminal domain which acts in the binding to insoluble cellulose. The N-terminal peptide missing in E III core corresponds to the heavily glycosylated common structural element found also in the N-terminus of cellobiohydrolase II and in the C-termini of cellobiohydrolase I and endoglucanase I. A similar bifunctional organization could thus be the rule for Trichoderma cellulases, endoglucanases as well as cellobiohydrolases.
Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing
[J].
DOI:10.1021/bi00444a016
PMID:2554967
[本文引用: 1]
The solution structure of a synthetic 36-residue polypeptide comprising the C-terminal cellulose binding domain of cellobiohydrolase I (CT-CBH I) from Trichoderma reesei was investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H NMR spectrum was completely assigned in a sequential manner by two-dimensional NMR techniques. A large number of stereospecific assignments for beta-methylene protons, as well as ranges for the phi, psi, and chi 1 torsion angles, were obtained on the basis of sequential and intraresidue nuclear Overhauser enhancement (NOE) and coupling constant data in combination with a conformational data base search. The structure calculations were carried out in an iterative manner by using the hybrid distance geometry-dynamical simulated annealing method. This involved computing a series of initial structures from a subset of the experimental data in order to resolve ambiguities in the assignments of some NOE cross-peaks arising from chemical shift degeneracy. Additionally, this permitted us to extend the stereospecific assignments to the alpha-methylene protons of glycine using information on phi torsion angles derived from the initial structure calculations. The final experimental data set consisted of 554 interproton distance restraints, 24 restraints for 12 hydrogen bonds, and 33 phi, 24 psi, and 25 chi 1 torsion angle restraints. CT-CBH I has two disulfide bridges whose pairing was previously unknown. Analysis of structures calculated with all three possible combinations of disulfide bonds, as well as without disulfide bonds, indicated that the correct disulfide bridge pairing was 8-25 and 19-35. Forty-one structures were computed with the 8-25 and 19-35 disulfide bridges, and the average atomic rms difference between the individual structures and the mean structure obtained by averaging their coordinates was 0.33 +/- 0.04 A for the backbone atoms and 0.52 +/- 0.06 A for all atoms. The protein has a wedgelike shape with an amphiphilic character, one face being predominantly hydrophilic and the other mainly hydrophobic. The principal element of secondary structure is made up of an irregular triple-stranded antiparallel beta-sheet composed of residues 5-9 (beta 1), 24-28 (beta 2), and 33-36 (beta 3) in which strand beta 3 is hydrogen bonded to the other two strands.(ABSTRACT TRUNCATED AT 400 WORDS)
Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects
[J].
DOI:10.1073/pnas.1005732107
PMID:20696902
[本文引用: 1]
Cell wall degrading enzymes have a complex molecular architecture consisting of catalytic modules and noncatalytic carbohydrate-binding modules (CBMs). The function of CBMs in cell wall degrading processes is poorly understood. Here, we have evaluated the potential enzyme-targeting function of CBMs in the context of intact primary and secondary cell wall deconstruction. The capacity of a pectate lyase to degrade pectic homogalacturonan in primary cell walls was potentiated by cellulose-directed CBMs but not by xylan-directed CBMs. Conversely, the arabinofuranosidase-mediated removal of side chains from arabinoxylan in xylan-rich and cellulose-poor wheat grain endosperm cell walls was enhanced by a xylan-binding CBM but less so by a crystalline cellulose-specific module. The capacity of xylanases to degrade xylan in secondary cell walls was potentiated by both xylan- and cellulose-directed CBMs. These studies demonstrate that CBMs can potentiate the action of a cognate catalytic module toward polysaccharides in intact cell walls through the recognition of nonsubstrate polysaccharides. The targeting actions of CBMs therefore have strong proximity effects within cell wall structures, explaining why cellulose-directed CBMs are appended to many noncellulase cell wall hydrolases.
Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity
[J].
DOI:10.1042/bj3310775
URL
[本文引用: 1]
To investigate the mode of action of cellulose-binding domains (CBDs), the Type II CBD from Pseudomonas fluorescenssubsp. cellulosaxylanase A (XYLACBD) and cellulase E (CELECBD) were expressed as individual entities or fused to the catalytic domain of a Clostridium thermocellumendoglucanase (EGE). The two CBDs exhibited similar Ka values for bacterial microcrystalline cellulose (CELECBD, 1.62×106 M-1; XYLACBD, 1.83×106 M-1) and acid-swollen cellulose (CELECBD, 1.66×106 M-1; XYLACBD, 1.73×106 M-1). NMR spectra of XYLACBD titrated with cello-oligosaccharides showed that the environment of three tryptophan residues was affected when the CBD bound cellohexaose, cellopentaose or cellotetraose. The Ka values of the XYLACBD for C6, C5 and C4 cello-oligosaccharides were estimated to be 3.3×102, 1.4×102 and 4.0×101 M-1 respectively, suggesting that the CBD can accommodate at least six glucose molecules and has a much higher affinity for insoluble cellulose than soluble oligosaccharides. Fusion of either the CELECBD or XYLACBD to the catalytic domain of EGE potentiated the activity of the enzyme against insoluble forms of cellulose but not against carboxymethylcellulose. The increase in cellulase activity was not observed when the CBDs were incubated with the catalytic domain of either EGE or XYLA, with insoluble cellulose and a cellulose/hemicellulose complex respectively as the substrates. PseudomonasCBDs did not induce the extension of isolated plant cell walls nor weaken cellulose paper strips in the same way as a class of plant cell wall proteins called expansins. The XYLACBD and CELECBD did not release small particles from the surface of cotton. The significance of these results in relation to the mode of action of Type II CBDs is discussed.
Engineering of a highly thermostable endoglucanase from the GH7 family of Bipolaris sorokiniana for higher catalytic efficiency
[J].DOI:10.1007/s00253-020-10515-0 [本文引用: 1]
The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution
[J].Cellulose-binding domains (CBDs) form distinct functional units of most cellulolytic enzymes. We have compared the cellulose-binding affinities of the CBDs of cellobiohydrolase I (CBHI) and endoglucanase I (EGI) from the fungus Trichoderma reesei. The CBD of EGI had significantly higher affinity than that of CBHI. Four variants of the CBHI CBD were made in order to identify the residues responsible for the increased affinity in EGI. Most of the difference could be ascribed to a replacement of a tyrosine by a tryptophan on the flat cellulose-binding face.
Binding of cellulose binding modules reveal differences between cellulose substrates
[J].
DOI:10.1038/srep35358
PMID:27748440
[本文引用: 1]
The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act.
Extra tyrosine in the carbohydrate-binding module of Irpex lacteus Xyn10B enhances its cellulose-binding ability
[J].
DOI:10.1080/09168451.2014.996203
URL
[本文引用: 2]
The xylanase (Xyn10B) that strongly adsorbs on microcrystalline cellulose was isolated from Driselase. The Xyn10B contains a Carbohydrate-binding module family 1 (CBM1) (IrpCBMXyn10B) at N-terminus. The canonical essential aromatic residues required for cellulose binding were conserved in IrpCBMXyn10B; however, its adsorption ability was markedly higher than that typically observed for the CBM1 of an endoglucanase from Trametes hirsuta (ThCBMEG1). An analysis of the CBM-GFP fusion proteins revealed that the binding capacity to cellulose (7.8 μmol/g) and distribution coefficient (2.0 L/μmol) of IrpCBMXyn10B-GFP were twofold higher than those of ThCBMEG1-GFP (3.4 μmol/g and 1.2 L/μmol, respectively), used as a reference structure. Besides the canonical aromatic residues (W24-Y50-Y51) of typical CBM1-containing proteins, IrpCBMXyn10B had an additional aromatic residue (Y52). The mutation of Y52 to Ser (IrpCBMY52S-GFP) reduced these adsorption parameters to 4.4 μmol/g and 1.5 L/μmol, which were similar to those of ThCBMEG1-GFP. These results indicate that Y52 plays a crucial role in strong cellulose binding.
/
| 〈 |
|
〉 |
