Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (1): 64-75.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.007
• Orignal Article • Previous Articles Next Articles
SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao
Received:
2016-08-29
Online:
2017-01-25
Published:
2017-01-19
SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao. Research Progresses in the Synthetic Biology of Terpenoids[J]. Biotechnology Bulletin, 2017, 33(1): 64-75.
[1] Nielsen J, Keasling JD. Synergies between synthetic biology and metabolic engineering[J]. Nature Biotechnology, 2011, 29:693-695. [2] Zhou J, Zhang H, Zhang Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide[J]. Metabolic Engineering, 2012, 14:394-400. [3] Sun J, Lin Y, Shen X, et al. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase[J]. Metabolic Engineering, 2016, 35:75-82. [4] Tan D, Wu Q, Chen J, et al. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014, 26:34-47. [5] 陈国强, 王颖. 中国“合成生物学”973项目研究进展[J]. 生物工程学报, 2015, 31(6):995-1008. [6] Wu H, Chen M, Mao Y, et al. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea[J]. Microbial Cell Factories, 2014, 13:158. [7] Li C, Tao F, Ni J, et al. Enhancing the light-driven production of D-lactate by engineering Cyanobacterium using a combinational strategy[J]. Scientific Reports, 2015, 5:9777. [8] Ni J, Tao F, Wang Y, et al. A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2[J]. Green Chemistry, 2016, 18(12):3537-3548. [9] Tan G, Deng Z, Liu T. Recent advances in the elucidation of enzymatic function in natural product biosynthesis[J]. F1000Research, 2015, 4(F1000 Faculty Rev):1399 [10] Ashour M, Wink M, Gershenzon J. Biochemistry of terpenoids:Monoterpenes, sesquiterpenes and diterpenes[M]// Wink M. Biochemistry of Plant Secondary Metabolism. 2rd ed. Wiley-Blackwell, 2010:258-303. [11] Singh B, Sharma RA. Plant terpenes:defense responses, phylogenetic analysis, regulation and clinical applications[J]. Biotechnology, 2015, 5(2):129-151. [12] Amato RJ, Perez C, Pagliaro L. Irofulven, a novel inhibitor of DNA synthesis, in metastatic renal cell cancer[J]. Investigational New Drugs, 2002, 20:413-417. [13] Jennewein S, Croteau R. Taxol:biosynthesis, molecular genetics, and biotechnological applications[J]. Applied Microbiology and Biotechnology, 2001, 57:13-19. [14] Zhang T, Li J, Dong Y, et al. Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion[J]. Breast Cancer Research and Treatment, 2012, 135:445-58. [15] Sorensen PM, Iacob RE, Fritzsche M, et al. The natural product cucurbitacin E inhibits depolymerization of actin filaments[J]. ACS Chemical Biology, 2012, 7:1502-1508. [16] Duangmano S, Dakeng S, Jiratchariyakul W, et al. Antiproliferative effects of cucurbitacin B in breast cancer cells:down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle[J]. International Journal of Molecular Sciences, 2010, 11:5323-5338. [17] Kausar H, Munagala R, Bansal SS, et al. Cucurbitacin B potently suppresses non-small-cell lung cancer growth:identification of intracellular thiols as critical targets[J]. Cancer Letters, 2013, 332:35-45. [18] Guo J, Zhao W, Hao W, et al. Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species(ROS)in leukemia K562 cells[J]. Anti-cancer Agents in Medicinal Chemistry, 2014, 14:1146-1153. [19] Shang Y, Ma Y, Zhou Y, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber[J]. Science, 2014, 346:1084-1088. [20] Ukiya M, Akihisa T, Yasukawa K, et al. Anti-inflammatory and anti-tumor-promoting effects of cucurbitane glycosides from the roots of Bryoniadioica[J]. Journal of Natural Products, 2002, 65:179-183. [21] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24:770-773. [22] Wright CW. Traditional antimalarials and the development of novel antimalarial drugs[J]. Journal of Ethnopharmacology, 2005, 100:67-71. [23] Ford NA, Erdman JW Jr. Are lycopene metabolites metabolically active?[J]. Acta Biochimica Polonica, 2012, 59(1):1-4. [24] Rao LG, Mackinnon ES, Josse RG, et al. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women[J]. Osteoporosis International, 2007, 18(18):109-115. [25] Martin VJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21:796-802. [26] Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science?Metabolic engineering of terpenoids in plants[J]. Trends in Plant Science, 2005, 10:594-602. [27] Pichersky E, Gershenzon J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense[J]. Current Opinion in Plant Biology, 2002, 5:237-243. [28] 文福姬, 俞庆善. 植物性天然香料的研究进展[J]. 现代化工, 2005, 25(4):25-28. [29] Balkema-Boomstra AG, Zijlstra S, Verstappen FW, et al. Role of cucurbitacin C in resistance to spider mite(Tetranychusurticae)in cucumber(Cucumissativus L. )[J]. Journal of Chemical Ecology, 2003, 29:225-235. [30] Powell G, Hardie J, Pickett JA, et al. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids[J]. Entomologia Experimentalis Et Applicata, 1997, 84(2):189-193. [31] George KW, Alonso-Gutierrez J, Keasling JD, et al. Isoprenoid drugs, biofuels, and chemicals—Artemisinin, farnesene, and beyond[M]// Schrader J & Bohlmann J. Biotechnology of Isoprenoids. Springer International Publishing, 2015, 148:355-389. [32] Roberts SC. Production and engineering of terpenoids in plant cell culture[J]. Nature Chemical Biology, 2007, 3:387-395. [33] Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes current status and future opportunities[J]. Plant Biotechnology Journal, 2013, 11:169-196. [34] Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44:357-429. [35] Liao P, Hemmerlin A, Bach TJ, et al. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances, 2016, 34(5):697-713. [36] Rohdich F, Hecht S, Gartner K, et al. Studies on the nonmevalonate terpene biosynthetic pathway:metabolic role of IspH(LytB)protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:1158-1163. [37] Liang PH, Ko TP, Wang AH. Structure, mechanism and function of prenyltransferases[J]. European Journal of Biochemistry / FEBS, 2002, 269:3339-3354. [38] Keeling CI, Weisshaar S, Lin RP, et al. Functional plasticity of paralogous diterpene synthases involved in conifer defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105:1085-1090. [39] Wallaart TE, Pras N, Beekman AC, et al. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin:proof for the existence of chemotypes[J]. Planta Medica, 2000, 66:57-62. [40] Tian J, Zhao X, Tu Y, et al. A synthetic approach for constructing the 3/6/6/5-fused tetracyclic skeleton of tenuipesine A[J]. Chemistry-An Asian Journal, 2014, 9:724-727. [41] Aharoni A, Jongsma MA, Kim TY, et al. Metabolic engineering of terpenoid biosynthesis in plants[J]. Phytochemistry Reviews, 2006, 5(1):49-58. [42] Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound s-linalool by metabolic engineering of the terpenoid pathway in tomato fruits[J]. Plant Physiology, 2001, 127:1256-1265. [43] Lucker J, Bouwmeester HJ, Schwab W, et al. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside[J]. The Plant Journal, 2001, 27:315-324. [44] Lavy M, Zuker A, Lewinsohn E, et al. Linalool and linallol oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene[J]. Molecular Breeding, 2002, 9:103-111. [45] Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. The Plant Cell, 2003, 15:2866-2884. [46] Bach TJ, Rohmer M. Isoprenoid synthesis in plants and microorganisms:New concepts and experimental approaches[M]. New York Heidelberg Dordrecht London:Springer International Publishing, 2013. [47] Jarboe LR, Zhang X, Wang X, et al. Metabolic engineering for production of biorenewable fuels and chemicals:contributions of synthetic biology[J]. Journal of Biomedicine & Biotechnology, 2010:761042. [48] Farmer WR, Liao JC. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli[J]. Biotechnology Progress, 2001, 17:57-61. [49] Kim SK, Han GH, Seong W, et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production[J]. Metabolic Engineering, 2016, 38:228-240. [50] Wang D, Dai Z, Zhang X. Production of plant-derived natural products in yeast cells-A review[J]. Acta Microbiologica Sinica, 2016, 56(3):516-529. [51] Dai Z, Liu Y, Guo J, et al. Yeast synthetic biology for high-value metabolites[J]. FEMS Yeast Research, 2015, 15:1-11. [52] Guo Y, Dong J, Zhou T, et al. YeastFab:the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2015, 43:e88. [53] Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance[J]. Biotechnology Advances, 2013, 31:986-991. [54] Phillips DR, Rasbery JM, Bartel B, et al. Biosynthetic diversity in plant triterpene cyclization[J]. Current Opinion in Plant Biology, 2006, 9:305-314. [55] Mizutani M. Impacts of diversification of cytochrome P450 on plant metabolism[J]. Biological & Pharmaceutical Bulletin, 2012, 35:824-832. [56] Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumissativus L. [J]. Nature Genetics, 2009, 41:1275-1281. [57] Herrero O, Ramon D, Orejas M. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine[J]. Metabolic Engineering, 2008, 10:78-86. [58] Zhang Y, Yuan Y, Zhang Q, et al. Characterisation of an(S)-lin- alool synthase from kiwifruit(Actinidiaarguta)that catalyses the first committed step in the production of floral lilac compounds [J]. Functional Plant Biology, 2010, 37(3):232-243. [59] Rico J, Pardo E, Orejas M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2010, 76:6449-6454. [60] 孙明雪, 刘继栋, 堵国成. 调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成[J]. 生物工程学报, 2013, 29(6):751-759. [61] Liu J, Zhu Y, Du G, et al. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress[J]. Applied Microbiology and Biotechnology, 2013, 97:6467-6475. [62] 刘继栋, 周景文, 陈坚. 酿酒酵母单萜耐受机理研究进展[J]. 微生物学报, 2013, 53(6):521-537. [63] Parveen M, Hasan MK, Takahashi J, et al. Response of Saccharomyces cerevisiae to a monoterpene:evaluation of antifungal potential by DNA microarray analysis[J]. The Journal of Antimicrobial Chemotherapy, 2004, 54:46-55. [64] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940-943. [65] Dahl RH, Zhang F, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31:1039-1046. [66] Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:E111-E118. [67] Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496:528-532. [68] Paddon CJ, Keasling JD. Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12:355-367. [69] 王学勇, 崔光红, 高伟. 药用植物功能基因克隆新方法——成分差异表型克隆法[J]. 中国中药杂志, 2009, 34(1):14. [70] Gao W, Hillwig ML, Huang L, et al. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J]. Organic Letters, 2009, 11:5170-5173. [71] Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109:2845-2853. [72] Zhou YJ, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal ofthe American Chemical Society, 2012, 134:3234-3241. [73] Guo J, Zhou YJ, Hillwig ML, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol inyeasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110:12108-12113. [74] Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8:e80464. [75] Xu X, Jiang Q, Ma X, et al. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza[J]. PLoS One, 2014, 9(11):e111679. [76] Gao W, Sun HX, Xiao HB, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiz[J]. BMC Genomics, 2014, 15:73. [77] Ma XH, Ma Y, Tang JF, et al. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Molecules, 2015, 20(9):16235-16254. [78] 高伟, 胡添源, 郭娟, 等. 丹参酮合成生物学研究进展[J]. 中国中药杂志, 2015, 40(13):2486-2491. [79] Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Letters, 2006, 580:5143-5149. [80] Kushiro T, Shibuya M, Ebizuka Y. Beta-amyrin synthase cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. European journal of biochemistry / FEBS, 1998, 256:238-244. [81] Han JY, Kim HJ, Kwon YS, et al. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J]. Plant & Cell Physiology, 2011, 52:2062-2073. [82] Zhang G, Cao Q, Liu J, et al. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae[J]. Aiche Journal, 2015, 61(10):3172-3179. [83] Gardner TS. Synthetic biology:from hype to impact[J]. Trends in Biotechnology, 2013, 31(3):123-125. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[3] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[4] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[5] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[6] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[9] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[10] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[11] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[12] | XU Yuan-yuan, ZHAO Guo-chun, HAO Ying-ying, WENG Xue-huang, CHEN Zhong, JIA Li-ming. Reference Genes Selection and Validation for RT-qPCR in Sapindus mukorossi [J]. Biotechnology Bulletin, 2022, 38(10): 80-89. |
[13] | LIU Xue-dan, YANG Meng, ZHANG Jing, ZHAO Dong-xu. Effects of Glucose-xylose Co-utilization on the Synthesis of D-1,2,4-Butanetriol by Recombinant Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(9): 171-179. |
[14] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[15] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||