Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 234-244.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1148
Previous Articles Next Articles
LI Meng-fan(), XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi()
Received:
2020-09-09
Online:
2021-04-26
Published:
2021-05-13
Contact:
WANG Guang-yi
E-mail:944324521@qq.com;gywang@tju.edu.cn
LI Meng-fan, XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi. Research Status in the Production of Squalene by Thraustochytrids[J]. Biotechnology Bulletin, 2021, 37(4): 234-244.
菌株 Strain | 角鲨烯产量 Production of squalene | 特点 Characteristics | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Aurantiochytrium sp. BR-MP4-A1 | 0.57 mg/g DCW | 筛选鉴定出一株奥尔兰多属菌株,生物量很高,受到培养条件的高度影响 | 2009 | [26] |
Aurantiochytriummangrovei FB3 | 0.53 mg/g DCW | 通过优化培养基和添加角鲨烯环氧化酶抑制剂(特比萘芬)来提高破囊壶菌的角鲨烯产量 | 2010 | [3] |
Aurantiochytrium sp. BR-MP4-A1 | 0.72 mg/g DCW | 研究了不同氮源之间的相互作用对破囊壶菌的角鲨烯产量的影响 | 2010 | [30] |
Aurantiochytrium sp. 18 W-13a | 198 mg/g DCW | 有较高产量,可用于后续条件优化工作 | 2011 | [31] |
Schizochytrium mangrovei PQ6 | 80.1 mg/g DCW | 从生物柴油生产过程的残渣中提取 | 2014 | [32] |
Schizochytrium sp.CCTCC 209059b | 84mg/g DCW | 首次报道了不皂化物(胆固醇、角鲨烯)在脂质更新阶段的增加 | 2014 | [33] |
Aurantiochytrium sp. Yonez 5-1 | 318 mg/g DCW | 有较高产量,是采用薄层色谱法(TLC)方法筛选得到 | 2014 | [29] |
Schizochytrium limacinum B4D1 | 20.09 mg/g DCW | 通过添加丁醇来降低DHA产量从而提高角鲨烯产量(添加6 g/L丁醇使角鲨烯含量从0.65 mg/g提高到20.09 mg/g) | 2017 | [34] |
Aurantiochytrium sp. T66 | 1.0 g/L | 首次使用木质纤维素作为原料来培养菌株生产角鲨烯 | 2019 | [35] |
Schizochytrium limacinum SR21 | 16.34 mg/g DCW | 用经过化学处理的云杉处理液代替葡萄糖生产角鲨烯和DHA | 2020 | [36] |
Table 1 Summary of the most squalene-producing chytrid strains studied at the present stage
菌株 Strain | 角鲨烯产量 Production of squalene | 特点 Characteristics | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Aurantiochytrium sp. BR-MP4-A1 | 0.57 mg/g DCW | 筛选鉴定出一株奥尔兰多属菌株,生物量很高,受到培养条件的高度影响 | 2009 | [26] |
Aurantiochytriummangrovei FB3 | 0.53 mg/g DCW | 通过优化培养基和添加角鲨烯环氧化酶抑制剂(特比萘芬)来提高破囊壶菌的角鲨烯产量 | 2010 | [3] |
Aurantiochytrium sp. BR-MP4-A1 | 0.72 mg/g DCW | 研究了不同氮源之间的相互作用对破囊壶菌的角鲨烯产量的影响 | 2010 | [30] |
Aurantiochytrium sp. 18 W-13a | 198 mg/g DCW | 有较高产量,可用于后续条件优化工作 | 2011 | [31] |
Schizochytrium mangrovei PQ6 | 80.1 mg/g DCW | 从生物柴油生产过程的残渣中提取 | 2014 | [32] |
Schizochytrium sp.CCTCC 209059b | 84mg/g DCW | 首次报道了不皂化物(胆固醇、角鲨烯)在脂质更新阶段的增加 | 2014 | [33] |
Aurantiochytrium sp. Yonez 5-1 | 318 mg/g DCW | 有较高产量,是采用薄层色谱法(TLC)方法筛选得到 | 2014 | [29] |
Schizochytrium limacinum B4D1 | 20.09 mg/g DCW | 通过添加丁醇来降低DHA产量从而提高角鲨烯产量(添加6 g/L丁醇使角鲨烯含量从0.65 mg/g提高到20.09 mg/g) | 2017 | [34] |
Aurantiochytrium sp. T66 | 1.0 g/L | 首次使用木质纤维素作为原料来培养菌株生产角鲨烯 | 2019 | [35] |
Schizochytrium limacinum SR21 | 16.34 mg/g DCW | 用经过化学处理的云杉处理液代替葡萄糖生产角鲨烯和DHA | 2020 | [36] |
菌种 Strains | 条件 Condition | 角鲨烯产量 The production of squalene | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Schizochytrium mangrovei FB1 | 20 g/L葡萄糖 | 0.162 mg/g DCW | 2004 | [45] |
Aurantiochytrium sp. BR-MP4-A1 | 30 g/L葡萄糖 | 0.72 mg/g DCW | 2010 | [29] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 198 mg/g DCW | 2011 | [31] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 171 mg/g DCW | 2012 | [61] |
Schizochytrium mangrovei PQ6 | 90 g/L葡萄糖 | 33.04 mg/g DCW | 2014 | [32] |
Aurantiochytrium sp. T66 | 通过有机溶剂预处理获得的桦木水解产物(含30 g/L葡萄糖) | 69.31 mg/g DCW(烧瓶培养)88.47 mg/g DCW(生物反应器培养) | 2019 | [35] |
Schizochytrium limacinum SR21 | 通过有机溶剂预处理获得的云杉水解产物(含60 g/L葡萄糖) | 16.34 mg/g DCW | 2020 | [36] |
Aurantiochytrium sp. T66 | 食用垃圾水解产物(含葡萄糖30 g/L,果糖9.89 g/L) | 71.54 mg/g DCW | 2020 | [62] |
Table 2 Squalene production of marine Thraustochytrids under optimal carbon source conditions
菌种 Strains | 条件 Condition | 角鲨烯产量 The production of squalene | 发表时间 Published date | 参考文献Reference |
---|---|---|---|---|
Schizochytrium mangrovei FB1 | 20 g/L葡萄糖 | 0.162 mg/g DCW | 2004 | [45] |
Aurantiochytrium sp. BR-MP4-A1 | 30 g/L葡萄糖 | 0.72 mg/g DCW | 2010 | [29] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 198 mg/g DCW | 2011 | [31] |
Aurantiochytrium sp. strain 18W-13a | 20 g/L葡萄糖 | 171 mg/g DCW | 2012 | [61] |
Schizochytrium mangrovei PQ6 | 90 g/L葡萄糖 | 33.04 mg/g DCW | 2014 | [32] |
Aurantiochytrium sp. T66 | 通过有机溶剂预处理获得的桦木水解产物(含30 g/L葡萄糖) | 69.31 mg/g DCW(烧瓶培养)88.47 mg/g DCW(生物反应器培养) | 2019 | [35] |
Schizochytrium limacinum SR21 | 通过有机溶剂预处理获得的云杉水解产物(含60 g/L葡萄糖) | 16.34 mg/g DCW | 2020 | [36] |
Aurantiochytrium sp. T66 | 食用垃圾水解产物(含葡萄糖30 g/L,果糖9.89 g/L) | 71.54 mg/g DCW | 2020 | [62] |
[1] | Patel A, Mu L, Shi Y, et al. Novel biorefinery approach aimed at vegetarians reduces the dependency on marine fish stocks for obtaining squalene and DHA[J]. ACS Sustainable Chemistry & Engineering, 2020,8(23):8803-8813. |
[2] |
Aioi A, Shimizu T, Kuriyama K. Effect of squalene on superoxide anion generation induced by a skin irritant, lauroylsarcosine[J]. International Journal of Pharmaceutics, 1995,113(2):159-164.
doi: 10.1016/0378-5173(94)00190-G URL |
[3] |
Fan KW, Aki T, Chen F, et al. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine[J]. World Journal of Microbiology & Biotechnology, 2010,26(7):1303-1309.
doi: 10.1007/s11274-009-0301-2 URL |
[4] |
Patel A, Rova U, Christakopoulos P, et al. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Science of the Total Environment, 2020,736:139691.
doi: 10.1016/j.scitotenv.2020.139691 URL |
[5] |
Tran TLN, Miranda AF, Mouradov A, et al. Physicochemical characteristics of protein isolated from thraustochytrid oilcake[J]. Foods, 2020,9(6):779.
doi: 10.3390/foods9060779 URL |
[6] | Turoczy NJ, Laurenson LJB, Allinson G, et al. Observations on metal concentrations in three species of shark(Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni)from southeastern Australian waters[J]. Journal of Agricultural & Food Chemistry, 2000,48(9):4357-4364. |
[7] |
Otagiri M, Khalid A, Moriya S, et al. Novel squalene-producing thraustochytrids found in mangrove water[J]. Biosci Biotechnol Biochem, 2017,81:2034-2037.
doi: 10.1080/09168451.2017.1359485 URL |
[8] |
Storelli MM, Ceci E, Storelli A, et al. Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks:contaminant status and assessment[J]. Marine Pollution Bulletin, 2003,46(8):1035-1039.
doi: 10.1016/S0025-326X(03)00119-X URL |
[9] | Han JY, Seo SH, Song JM, et al. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(4):239-251. |
[10] |
Gohil N, Bhattacharjee G, Khambhati K, et al. Engineering strategies in microorganisms for the enhanced production of squalene:advances, challenges and opportunities[J]. Frontiers in Bioengineering and Biotechnology, 2019,7:00114.
doi: 10.3389/fbioe.2019.00114 URL |
[11] |
Bhattacharjee P, Shukla VB, Singhal RS, et al. Studies on fermentative production of squalene[J]. World Journal of Microbiology & Biotechnology, 2001,17(8):811-816.
doi: 10.1023/A:1013573912952 URL |
[12] | Fornairon BC, Demaretz V, Rosenfeld E, et al. Oxygen addition and sterol synjournal in Saccharomyces cerevisiae during enological fermentation[J]. Journal of Bioence & Bioengineering, 2002,93(2):176-182. |
[13] |
Chen F, Johns MR. Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture[J]. Journal of Applied Phycology, 1996,8(1):15-19.
doi: 10.1007/BF02186216 URL |
[14] | Fan KW, Jiang Y, Fan YW, et al. Lipid characterization of mangrove thraustochytrid--Schizochytrium mangrovei.[J]. Journal of Agricultural & Food Chemistry, 2007,55(8):2906-2910. |
[15] |
Sparrow FK. Biological Observations on the marine fungi of woods hole waters[J]. Biological Bulletin, 1936,70(2):236-263.
doi: 10.2307/1537470 URL |
[16] |
Fossier LM, Lee KC, Nichols PD, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids:A review[J]. Biotechnology Advances, 2017,36(1):26-46.
doi: 10.1016/j.biotechadv.2017.09.003 URL |
[17] |
Cavalier-Smith T. Thraustochytrids are chromists not fungi:signature sequences of heterokonta[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 1994,346:387-397.
doi: 10.1098/rstb.1994.0156 URL |
[18] |
Byreddy AR, Gupta A, Barrow CJ, et al. A quick colorimetric method for total lipid quantification in microalgae[J]. Microbiol Methods, 2016,125:28-32.
doi: 10.1016/j.mimet.2016.04.002 URL |
[19] | Manikan V, Nazir MYM, Kalil, MS, et al. A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters[J]. Algal Research, 2015,9:42-47. |
[20] |
Christian M, Caroline B, Cecile M, et al. The lipid metabolism in thraustochytrids[J]. Progress in Lipid Research, 2019,76:101007.
doi: S0163-7827(19)30050-5 pmid: 31499096 |
[21] |
Bochdansky AB, Clouse MA, Herndl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow[J]. ISME Journal, 2017,11(2):362-373.
doi: 10.1038/ismej.2016.113 pmid: 27648811 |
[22] | Raghukuma S. Ecology of the marine protists, the Labyrinthulomy-cetes(Thraustochytrids and Labyrinthulids)[J]. Protistol, 2002,38(2):127-145. |
[23] | Hoque MM, Mustafa KAH, Idris MH, et al. Litterfall production in a tropical mangrove of Sarawak, Malaysia[J]. Acta Zoologica Lituanica, 2015,25(2):157-165. |
[24] | Aasen IM, Ertesvåg H, Heggeset TMB, et al. Thraustochytrids as production organisms for docosahexaenoic acid(DHA), squalene, and carotenoids[J]. Applied Microbiology & Biotechnology, 2016,100(10):4309-4321. |
[25] |
Hong WK, Heo SY, Park HM, et al. Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101[J]. Journal of Microbiology and Biotechnology, 2013,23(6):759-765.
doi: 10.4014/jmb URL |
[26] | Li Q, Chen GQ, Fan KW, et al. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves[J]. Journal of Agricultural & Food Chemistry, 2009,57(10):4267-4272. |
[27] | Masato O, Ammara K, Shigeharu M, et al. Novel squalene-producing thraustochytrids found in mangrove water[J]. Bioscience, Biotechnology and Biochemistry, 2017,8(10):2034-2037. |
[28] |
Gupta A, Singh D, Byreddy AR, et al. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity[J]. Biotechnology Journal, 2016,11(3):345-355.
doi: 10.1002/biot.v11.3 URL |
[29] |
Nakazawa A, Kokubun Y, Matsuura H, et al. TLC screening of thraustochytrid strains for squalene production[J]. Appl Phycol, 2014,26(1):29-41.
doi: 10.1007/s10811-013-0080-x URL |
[30] |
Chen G, Fan KW, Lu FP, et al. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp.[J]. New Biotechnology, 2010,27(4):382-389.
doi: 10.1016/j.nbt.2010.04.005 URL |
[31] |
Kaya K, Nakazawa A, Matsuura H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene[J]. Biosci Biotechnol Biochem, 2011,75(11):2246-2248.
doi: 10.1271/bbb.110430 URL |
[32] |
Hoang MH, Ha NC, Thom LT, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process[J]. Journal of Bioscience and Bioengineering, 2014,118(6):632-639.
doi: 10.1016/j.jbiosc.2014.05.015 pmid: 24973317 |
[33] |
Ren LJ, Sun GN, Ji XJ, et al. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp.[J]. Bioresource Technology, 2014,157:107-113.
doi: 10.1016/j.biortech.2014.01.078 URL |
[34] |
Zhang K, Chen L, Liu J, et al. Effects of butanol on high value product production in Schizochytrium limacinum B4D1[J]. Enzyme and Microbial Technology, 2017,102:9-15.
doi: S0141-0229(17)30051-0 pmid: 28465065 |
[35] |
Patel A, Rova U, Christakopoulos P, et al. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates[J]. Biotechnol Biofuels, 2019,12(1):255.
doi: 10.1186/s13068-019-1593-6 URL |
[36] |
Christakopoulos P, Patel A, Liefeldt S, et al. Co-production of DHA and squalene by thraustochytrid from forest biomass[J]. Scientific Reports, 2020,10(1):1992.
doi: 10.1038/s41598-020-58728-7 pmid: 32029800 |
[37] | Valitova JN, Sulkarnayeva AG, Minibayeva FV. Plant sterols:Diversity, biosynjournal, and physiological functions[J]. Biochemistry, 2016,81(8):819-834. |
[38] |
Nagegowda DA. Plant volatile terpenoid metabolism:biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Lett, 2010,584(14):2965-2973.
doi: 10.1016/j.febslet.2010.05.045 URL |
[39] |
Dellero Y, Olivier C, Suzanne R, et al. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudocryptic genus Aurantioch-ytrium[J]. Algal Research, 2018,35:125-141.
doi: 10.1016/j.algal.2018.08.018 URL |
[40] |
Wen X, Xi M, Yang W. Production of squalene by microbes:an update[J]. World Journal of Microbiology and Biotechnology, 2016,32(12):195.
doi: 10.1007/s11274-016-2155-8 URL |
[41] |
Xu R, Fazio GC, Matsuda SPT. On the origins of triterpenoid skeletal diversity[J]. Phytochem, 2004,65(3):261-291.
doi: 10.1016/j.phytochem.2003.11.014 URL |
[42] | Katabami A, Li L, Iwasaki M, et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli[J]. Journal of Bioence & Bioengineering, 2014,119(2):165-171. |
[43] | Suo J, Tong K, Wu J, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynjournal in Torreya grandis[J]. Industrial Crops & Products, 2019,131:182-193. |
[44] | Xu W, Yao J, Liu L, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli[J]. Biotechnology for Biofuels, 2019,12(1):13068. |
[45] | Jiang Y, Fan K, Wong R, et al. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei[J]. Journal of Agricultural & Food Chemistry, 2004,52(5):196-200. |
[46] |
Pollier J, Vancaester E, Kuzhiumparambil U, et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynjournal[J]. Nature Microbiology, 2019,4(2):226-233.
doi: 10.1038/s41564-018-0305-5 pmid: 30478288 |
[47] | Zhang A, Xie Y, He Y, et al. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes[J]. Bioresource Technology, 2019,287:1214-1215. |
[48] |
Ghimire GP, Thuan NH, Koirala N, et al. Advances in biochemistry and microbial production of squalene and its derivatives[J]. Journal of Microbiology and Biotechnology, 2016,26(3):441-451.
doi: 10.4014/jmb.1510.10039 pmid: 26643964 |
[49] |
Li J, Hao P, Li Z, et al. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynjournal in Schizochytrium sp. MYA 1381[J]. BMC Microbiology, 2019,19:256.
doi: 10.1186/s12866-019-1622-4 URL |
[50] |
Bagmi P, Elias E, Nicholas N, et al. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803[J]. Metabolic Engineering Communications, 2020,10:e00125.
doi: 10.1016/j.mec.2020.e00125 URL |
[51] | Asadollahi MA, Jérme M, Schalk M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae[J]. Biotechnology & Bioengineering, 2010,106(1):86-96. |
[52] |
Garaiová M, Zambojová V, Šimová Z. Squalene epoxidase as a target for manipulateon of squalene levels in the yeast Saccharomy-ces cerevisiae[J]. FEMS Yeast Research, 2014,14(2):310-323.
doi: 10.1111/1567-1364.12107 pmid: 24119181 |
[53] | 吴海龙, 崔岩, 成家杨. 破囊壶菌二十二碳六烯酸(DHA)的制备工艺及应用前景[J]. 食品与发酵工业, 2016,42(2):259-264. |
Wu H, Cui Y, Cheng J. Perspective in the production and application of DHA from Thraustochytrids[J]. Food and Fermentation Industries, 2016,42(2):259-264. | |
[54] | King WF, Chen F. Production of high-value products by marine microalgae thraustochytrids-chapter 11[J]. Bioprocessing for Value-Added Products from Renewable Resources, 2007, 293-323. |
[55] | 叶会科, 王秋珍, 何耀东, 汪光义. 破囊壶菌发酵生产DHA的研究进展[J]. 化工进展, 2020,39(8):3235-3245. |
Ye H, Wang Q, He Y, Wang G. Research progress in DHA production by thraustochytrids[J]. Chemical Industry and Engineering Progress, 2020,39(8):3235-3245. | |
[56] |
Ratledge C. Omega-3 biotechnology:errors and omissions[J]. Biotechnology Advances, 2012,30(6):1746-1747.
doi: 10.1016/j.biotechadv.2012.04.002 pmid: 22531169 |
[57] |
Marchan LF, Lee Chang KJ, Nichols PD, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids:A review[J]. Biotechnology Advances, 2017,36(1):26-46.
doi: 10.1016/j.biotechadv.2017.09.003 URL |
[58] |
Ye H, He Y, Xie Y, et al. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways[J]. Bioresource Technology, 2020,297:122402.
doi: 10.1016/j.biortech.2019.122402 URL |
[59] |
Tran TLN, Miranda AF, Gupta A, et al. The nutritional and pharmacological potential of new australian thraustochytrids isolated from mangrove sediments[J]. Marine Drugs, 2020,18(3):151.
doi: 10.3390/md18030151 URL |
[60] | 张静. 高山被孢霉发酵生产多不饱和脂肪酸的初步研究[D]. 无锡:江南大学, 2011. |
Zhang J. The preliminary study of fermentation conditions for polyunsaturated fatty acids production by Mortierellaaplina[D]. Wuxi:Jiangnan University, 2011. | |
[61] |
Nakazawa A, Matsuura H, Kose R, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production[J]. Bioresource Technology, 2012,109:287-291.
doi: 10.1016/j.biortech.2011.09.127 pmid: 22023965 |
[62] |
Patel A, Rova U, Christakopoulos P, et al. Mining of squalene as a valueadded byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Science of the Total Environment, 2020,736:139691.
doi: 10.1016/j.scitotenv.2020.139691 URL |
[63] |
Zou YJ, Yang LF, Wang L. Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6 T[J]. J Microbiol, 2008,46(4):415-421.
doi: 10.1007/s12275-008-0009-2 URL |
[64] | 侯盼. 裂殖壶菌人工海水配方优化及pks3基因功能的初步研究[D]. 青岛:中国海洋大学, 2013. |
Hou P. Formula optimization about artificial seawater and preliminary function research on pks3 gene of Schizochytrium[D]. Qingdao:Ocean University of China, 2013. | |
[65] |
Lewis TE, Nichols PD, Mcmeekin TA. Sterol and squalene content of a docosahexaenoic acid-producing thraustochytrid:influence of culture age, temperature, and dissolved oxygen[J]. Marine Biotechnology, 2001,3(5):439-447.
pmid: 14961336 |
[66] |
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids[J]. Bioresource Technology, 2017,244(Pt 2):1269-1280.
doi: 10.1016/j.biortech.2017.05.002 URL |
[67] |
Smith TJ. Squalene:potential chemopreventive agent[J]. Expert Opin Invest Drugs, 2000,9:1841-1848.
doi: 10.1517/13543784.9.8.1841 URL |
[68] |
Wentzinger LF, Bach TJ, Hartmann MA. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase[J]. Plant Physiology, 2002,130(1):334-346.
doi: 10.1104/pp.004655 URL |
[69] |
Heath C, Kiss R. Cell culture process development:advances in process engineering[J]. Biotechnology Progress, 2007,23(1):46-51.
doi: 10.1021/bp060344e URL |
[70] |
Wang G, Tang W, Xia J, et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses[J]. Engineering in Life Sciences, 2015,15(1):20-29.
doi: 10.1002/elsc.v15.1 URL |
[71] |
Zou X, Xia JY, Chu J, et al. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m 3 fermenter[J]. Bioprocess and Biosystems Engineering, 2012,35(5):789-800.
doi: 10.1007/s00449-011-0659-z URL |
[72] |
Duan S, Yuan G, Zhao Y, et al. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations[J]. Korean Journal of Chemical Engineering, 2013,30(5):1097-1104.
doi: 10.1007/s11814-013-0010-2 URL |
[73] |
Mohamad NAS, Wan AAQIW, Zul I, et al. Vital parameters for biomass, lipid, and carotenoid production of thraustochytrids[J]. Journal of Applied Phycology, 2020,32:1003-1016.
doi: 10.1007/s10811-019-01970-y URL |
[74] |
Yue CJ, Jiang Y. Impact of methyl jasmonate on squalene biosynjournal in microalga Schizochytrium mangrovei[J]. Process Biochemistry, 2009,44(8):923-927.
doi: 10.1016/j.procbio.2009.03.016 URL |
[75] |
Liechti R, Farmer EE. The jasmonate pathway[J]. Science, 2002,296(5573):1649-1650.
doi: 10.1126/science.1071547 URL |
[76] |
Van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J]. Science, 2000,289(5477):295-297.
doi: 10.1126/science.289.5477.295 URL |
[77] | Cornejo-Corona I, Thapa HR, Browne DR, et al. Stress responses of the oil-producing green microalga Botryococcus braunii Race B[J]. PeerJ, 2016,4(12):2748. |
[78] |
Ana CJ, Justin A, Michele F, et al. The unique sterol biosynjournal pathway of three model diatoms consists of a conserved core and diversified endpoints[J]. Algal Research, 2020,48:101902.
doi: 10.1016/j.algal.2020.101902 URL |
[79] |
Audrey S, Michele F, Unnikrishnan K, et al. Methyl jasmonate treatment affects the regulation of the 2- C -methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynjournal in Chlamydomonas reinhardtii[J]. Algal Research, 2019,39:101462.
doi: 10.1016/j.algal.2019.101462 URL |
[80] |
Ryder NS. Inhibition of squalene epoxidase and sterol side-chain methylation by allylamines[J]. Biochem Soc Trans, 1990,18:45-46.
doi: 10.1042/bst0180045 URL |
[81] | Kajikawa M, Kinohira S, Ando A, et al. Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes[J]. PLoS One, 2015,10(3):0120446. |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[5] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[6] | PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains [J]. Biotechnology Bulletin, 2023, 39(6): 298-307. |
[7] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[9] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[10] | YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation [J]. Biotechnology Bulletin, 2023, 39(2): 1-9. |
[11] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[12] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[13] | LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(10): 219-230. |
[14] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[15] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||