[1]李建科, 冯毛, 郑爱娟. 蜜蜂蛋白质组研究进展[J]. 中国农业科学, 2011, 44(17):3649-3657. [2]Iovinella I, Dani FR, Niccolini A, et al. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age[J]. Jouranl of Proteome Research, 2011, 10(8):3439-3449. [3]Fang Y, Song F, Zhang L, et al. Differential antennal proteome comparison of adult honeybee drone, worker and queen(Apis mellifera L. )[J]. Journal of Proteomics, 2012, 75(3):756-773. [4]Feng M, Song F, Aleku D, et al. Antennal proteome comparison of sexually mature drone and forager honey bees[J]. Journal of Proteome Research, 2011, 10:3246-3260. [5]Woltedji D, Song F, Zhang L, et al. Western honeybee drones and workers(Apis mellifera ligustica)have different olfactory mechanisms than eastern honeybees(Apis cerana cerana)[J]. Journal of Proteome Research, 2012, 11:4526-4540. [6]Fang Y, Feng M, Han B, et al. In-depth proteomics characterization of embryogenesis of the honey bee worker(Apis mellifera ligustica)[J]. Molecular& Cellular Proteomics, 2014, 13(9):2306-2320. [7]Li J, Fang Y, Zhang L, et al. Honeybee(Apis mellifera ligustica)drone embryo proteomes[J]. Journal of Insect Physiology, 2011, 57(3):372-384. [8]Haapalainen AM, Koski MK, Qin YM, et al. Binary structure of the two-domain(3R)-hydroxyacyl-CoA dehydrogenase from rat peroxisomal multifunctional enzyme type 2 at 2. 38 ? resolution[J]. Structure, 2003, 11(1):87-97. [9]Zheng A, Li J, Begna D, et al. Proteomic analysis of honeybee(Apis mellifera L.) pupae head development[J]. PLoS One, 2011, 6(5):e20428. [10]Begna D, Fang Y, Feng M, et al. Mitochondrial proteins differential expression during honeybee(Apis mellifera L.)queen and worker larvae caste determination[J]. Journal of Proteome Research, 2011, 10:4263-4280. [11]Begna D, Han B, Feng M, et al. Differential expressions of nuclear proteomes between honeybee(Apis mellifera L.)queen and worker larvae:a deep insight into caste pathway decisions[J]. Journal of Proteome Research, 2012, 11:1317-1329. [12]Chan QWT, Mutti NS, Foster LJ, et al. The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition[J]. PLoS One, 2011, 6(9):e24794. [13]Herna?ndez LG, Lu B, da Cruz GCN, et al. Worker honeybee brain proteome[J]. Journal of Proteome Research, 2012, 11(3):1485-1493. [14]Cardoen D, Ernst U, Boerjan B, et al. Worker honeybee sterility:a proteomic analysis of suppressed ovary activation[J]. Journal of Proteome Research, 2012, 11(5):2838-2850. [15]Woltedji D, Fang Y, Han B, et al. Proteome analysis of hemolymph changes during the larval to pupal development stages of honeybee workers(Apis mellifera ligustica)[J]. Journal of Proteome Research, 2013, 12(11):5189-5198. [16]Feng M, Ramadan H, Han B, et al. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees(Apis mellifera)and eastern honey bees(Apis cerana)[J]. BMC Genomics, 2014, 15:563. [17]Poland V, Eubel H, King M, et al. Stored sperm differs from ejaculated sperm by proteome alterations associated with energy metabolism in the honeybee Apis mellifera[J]. Molecular Ecology, 2011, 20(12):2643-2654. [18]Zareie R, Eubel H, Millar AH, et al. Long-term survival of high quality sperm:insights into the sperm proteome of the honeybee Apis mellifera[J]. Journal of Proteome Research, 2013, 12(11):5180-5188. [19]Baer B, Zareie R, Paynter E, et al. Seminal fluid proteins differ in abundance between genetic lineages of honeybees[J]. Journal of Proteomics, 2012, 75(18):5646-5653. [20]Parker R, Guarna MM, Melathopoulos AP, et al. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee(Apis mellifera)[J]. Genome Biology, 2012, 13(9):R81. [21]Ji T, Liu Z, Shen J, et al. Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann[J]. BMC Genomics, 2014, 15:665. [22] Feng M, Fang Y, Han B, et al. Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees(Apis mellifera)investigated by proteomics and phosphoproteomics[J]. Journal of Proteomics, 2013, 87:1-15. [23]Pratavieira M, da Silva Menegasso AR, Garcia AM, et al. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera)brain:effect of ontogeny[J]. Journal of Proteome Resarch, 2014, 13(6):3054-3064. [24]Chan QWT, Chan MY, Logan M, et al. Honey bee protein atlas at organ-level resolution[J]. Genome Research, 2013, 23(11):1951-1960. [25]Han B, Zhang L, Feng M, et al. An Integrated proteomics reveals pathological mechanism of honeybee(Apis cerena)Sacbrood Disease[J]. Journal of Proteome Research, 2013, 12:1881-1897. [26]Zhang Y, Zhang G, Huang X, et al. Proteomic analysis of Apis cerana and Apis mellifera larvae fed with heterospecific royal jelly and by CSBV challenge[J]. PLoS One, 2014, 9(8):e102663. [27]Vidau C, Panek J, Texier C, et al. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions[J]. Journal of Invertebrate Pathology, 2014, 121:89-96. [28]Roat TC, dos Santos-Pinto JR, Dos Santos LD, et al. Modification of the brain proteome of Africanized honeybees(Apis mellifera)exposed to a sub-lethal doses of the insecticide fipronil[J]. Ecotoxicology, 2014, 23(9):1659-1670. [29]Kamakura M. Royalactin induces queen differentiation in honeybees[J]. Nature, 2011, 473(7348):478-483. [30]Fujita T, Kozuka-Hata H, Ao-Kondo H, et al. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee[J]. Journal of Proteome Research, 2013, 12(1):404-411. [31]Han B, Li C, Zhang L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural and Food Chemistry, 2011, 59:10346-10355. [32]Zhang L, Fang Y, Li R, et al. Towards posttranslational modification proteome of royal jelly[J]. Journal of Proteomics, 2012, 12:5327-5341. [33]Han B, Fang Y, Feng M, et al. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species[J]. Journal of Proteome Research, 2014, 13(12):5928-5943. [34]Zhang L, Han B, Li R, et al. Comprehensive identification of novel proteins and N-glycosylation sites in royal jelly[J]. BMC Genomics, 2014, 15:135. [35] Resende VMF, Vasilj A, Santos KS, et al. Proteome and phosphoproteome of Africanized and European honeybee venoms[J]. Proteomics, 2013, 13(17):2638-2648. [36]Li R, Zhang L, Fang Y, et al. Proteome and phosphoproteome analysis of honeybee(Apis mellifera)venom collected from electrical stimulation and manual extraction of the venom gland[J]. BMC Genomics, 2013, 14:766. [37]Matysiak J, Hajduk J, Pietrzak L, et al. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies[J]. Toxicon, 2014, 90:255-264. [38]Matysiak J, Schmelzer CE, Neubert RH, et al. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54(2):273-278. [39]Van Vaerenbergh M, Debyser G, Devreese B, et al. Exploring the hidden honeybee(Apis mellifera)venom proteome by integrating a combinatorial peptide ligand library approach with FTMS[J]. Journal of Proteomics, 2014, 99:169-178. [40]Di Girolamo F, D’Amato A, Righetti PG. Assessment of the floral origin of honey via proteomic tools[J]. Journal of Proteomics, 2012, 75(12):3688-3693. |