生物技术通报 ›› 2019, Vol. 35 ›› Issue (11): 187-194.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0168
吴霄, 庄站伟, 马晓莉, 黄思秀, 李紫聪, 徐铮
收稿日期:
2019-03-01
出版日期:
2019-11-26
发布日期:
2019-11-19
作者简介:
吴霄,男,博士研究生,研究方向:种猪体细胞克隆与基因编辑;E-mail:wuxiao5901@163.com
基金资助:
WU Xiao, ZHUANG Zhan-wei, MA Xiao-li, HUANG Si-xiu, LI Zi-cong, XU Zheng
Received:
2019-03-01
Published:
2019-11-26
Online:
2019-11-19
摘要: 哺乳动物的体细胞核移植技术已经发展了20年有余,重构胚发育过程中的核重编程异常是制约这项技术应用的主要障碍。目前,提高克隆效率的方法主要是通过调节重编程过程中的表观遗传修饰来修复重编程的错误,从而提高核移植胚胎的发育效率。综述了核移植后早期胚胎发育过程中供体核重编程的异常,讨论了修复这些异常表观遗传修饰的研究进展,并对可能影响核移植胚胎发育的重编程事件及新兴技术进行展望。
吴霄, 庄站伟, 马晓莉, 黄思秀, 李紫聪, 徐铮. 核移植介导的哺乳动物体细胞核重编程研究进展[J]. 生物技术通报, 2019, 35(11): 187-194.
WU Xiao, ZHUANG Zhan-wei, MA Xiao-li, HUANG Si-xiu, LI Zi-cong, XU Zheng. Research Progress on the Nuclear Reprogramming After Somatic Cells Nuclear Transfer in Mammalian[J]. Biotechnology Bulletin, 2019, 35(11): 187-194.
[1] Rodriguez-Osorio N, Urrego R, Cibelli JB, et al.Reprogramming mammalian somatic cells[J]. Theriogenology, 2012, 78(9):1869-1886. [2] Liu Z, Cai Y, Wang Y, et al.Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 2018, 174(1):881-887. [3] Young LE, Fairburn HR.Improving the safety of embryo technologies:possible role of genomic imprinting[J]. Theriogenology, 2000, 53(2):627-648. [4] Ogura A, Inoue K, Wakayama T.Recent advancements in cloning by somatic cell nuclear transfer[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609):20110329. [5] Kishigami S, Wakayama S, Hosoi Y, et al.Somatic cell nuclear transfer:infinite reproduction of a unique diploid genome[J]. Exp Cell Res, 2008, 314(9):1945-1950. [6] Campbell KH, Loi P, Otaegui PJ, et al.Cell cycle co-ordination in embryo cloning by nuclear transfer[J]. Rev Reprod, 1996, 1(1):40-46. [7] Matoba S, Zhang Y.Somatic cell nuclear transfer reprogramming:mechanisms and applications[J]. Cell Stem Cell, 2018, 23(4):471-485. [8] Ahmed K, Dehghani H, Rugg-Gunn P, et al.Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo[J]. PLoS One, 2010, 5(5):e10531. [9] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [10] Chronis C, Fiziev P, Papp B, et al.Cooperative binding of transcription factors orchestrates reprogramming[J]. Cell, 2017, 168(3):442-459. [11] Hussein SM, Puri MC, Tonge PD, et al.Genome-wide characterization of the routes to pluripotency[J]. Nature, 2014, 516(7530):198-206. [12] Djekidel MN, Inoue A, Matoba S, et al.Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent[J]. Cell Rep, 2018, 23(7):1939-1947. [13] Li D, Liu J, Yang X, et al.Chromatin accessibility dynamics during iPSC reprogramming[J]. Cell Stem Cell, 2017, 21(6):819-833. [14] He YF, Li BZ, Li Z, et al.Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA[J]. Science, 2011, 333(6047):1303-1307. [15] Iqbal K, Jin SG, Pfeifer GP, et al.Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine[J]. Proc Natl Acad Sci USA, 2011, 108(9):3642-3647. [16] Guo F, Li X, Liang D, et al.Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote[J]. Cell Stem Cell, 2014, 15(4):447-459. [17] Peat JR, Reik W.Incomplete methylation reprogramming in SCNT embryos[J]. Nat Genet, 2012, 44(9):965-966. [18] Sun L, Wu KL, Zhang D, et al.Increased cleavage rate of human nuclear transfer embryos after 5-aza-2’-deoxycytidine treatment[J]. Reprod Biomed Online, 2012, 25(4):425-433. [19] Jones KL, Hill J, Shin TY, et al.DNA hypomethylation of karyoplasts for bovine nuclear transplantation[J]. Mol Reprod Dev, 2001, 60(2):208-213. [20] Yan JH, Zhu J, Xie BT, et al.Treating cloned embryos, but not donor cells, with 5-aza-2’-deoxycytidine enhances the developmental competence of porcine cloned embryos[J]. J Reprod Dev, 2013, 59(5):442. [21] Cao H, Li J, Su W, et al.Zebularine significantly improves the preimplantation development of ovine somatic cell nuclear transfer embryos[J]. Reprod Fertil Dev, 2018, 31(2):357-365. [22] Zhai Y, Zhang Z, Yu H, et al.Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs[J]. Cell Physiol Biochem, 2018, 50(4):1376-1397. [23] Gu TP, Guo F, Yang H, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J]. Nature, 2011, 477(7366):606-610. [24] Wossidlo M, Nakamura T, Lepikhov K, et al.5-Hydroxymethylcyto-sine in the mammalian zygote is linked with epigenetic reprogram-ming[J]. Nat Commun, 2011, 2:241. [25] Han C, Deng R, Mao T, et al.Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency[J]. FEBS J, 2018, 285(14):2708-2723. [26] Gao R, Wang C, Gao Y, et al.Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos[J]. Cell Stem Cell, 2018, 23(3):426-435. [27] Eckersley-Maslin MA, Svensson V, Krueger C, et al.MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs[J]. Cell Rep, 2016, 17(1):179-192. [28] Yun M, Wu J, Workman JL, et al.Readers of histone modifications[J]. Cell Res, 2011, 21(4):564-578. [29] Teperek M, Miyamoto K.Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes[J]. Reprod Med Biol, 2013, 12:133-149. [30] Hazzouri M, Pivot-Pajot C, Faure AK, et al.Regulated hyperacetylation of core histones during mouse spermatogenesis:involvement of histone deacetylases[J]. Eur J Cell Biol, 2000, 79(12):950-960. [31] Wee G, Koo DB, Song BS, et al.Inheritable histone H4 acetylation of somatic chromatins in cloned embryos[J]. J Biol Chem, 2006, 281(9):6048-6057. [32] Iager AE, Ragina NP, Ross PJ, et al.Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos[J]. Cloning Stem Cells, 2008, 10(3):371-379. [33] Bui HT, Wakayama S, Kishigami S, et al.Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos[J]. Biol Reprod, 2010, 83(3):454-463. [34] Van Thuan N, Bui HT, Kim JH, et al.The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice[J]. Reproduction, 2009, 138(2):309-317. [35] Jin JX, Lee S, Taweechaipaisankul A, et al.The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos[J]. Cell Physiol Biochem, 2017, 41(3):1255-1266. [36] Jin L, Guo Q, Zhu HY, et al.Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos[J]. Mol Reprod Dev, 2017, 84(4):340-346. [37] Enright BP, Kubota C, Yang X, et al.Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine[J]. Biol Reprod, 2003, 69(3):896-901. [38] Wang YS, Xiong XR, An ZX, et al.Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2 / -deoxycytidine and trichostatin A[J]. Theriogenology, 2011, 75(5):819-825. [39] Yuta T, Yoko K, Yukio T.The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine[J]. Zygote, 2009, 17(2):109-115. [40] Matoba S, Liu Y, Lu F, et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 2014, 159(4):884-895. [41] Chung YG, Matoba S, Liu Y, et al.Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J]. Cell Stem Cell, 2015, 17(6):758-766. [42] Liu X, Wang Y, Gao Y, et al.H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J]. Development, 2018, 145(4):v158261. [43] Ruan D, Peng J, Wang X, et al.XIST derepression in active x chromosome hinders pig somatic cell nuclear transfer[J]. Stem Cell Reports, 2018, 10(2):494-508. [44] Yang X, Hu B, Hou Y, et al.Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages[J]. Cell Research, 2018, 28(5):593-596. [45] Inoue A, Jiang L, Lu F, et al.Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547(7664):419-424. [46] Matoba S, Wang H, Jiang L, et al.Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development[J]. Cell Stem Cell, 2018, 23(3):343-354. [47] Ferguson-Smith AC.Genomic imprinting:the emergence of an epigenetic paradigm[J]. Nat Rev Genet, 2011, 12(8):565-575. [48] Wei Y, Zhu J, Huan Y, et al.Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets[J]. Cell Reprogram, 2010, 12(2):213-222. [49] Yang L, Chavatte-Palmer P, Kubota C, et al.Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones[J]. Mol Reprod Dev, 2005, 71(4):431-438. [50] Hiroaki O, Shogo M, Takeshi N, et al.RNA sequencing-based identification of aberrant imprinting in cloned mice[J]. Hum Mol Genet, 2014, 23(4):992-1001. [51] Yu D, Wang J, Zou H, et al.Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning[J]. Proc Natl Acad Sci USA, 2018, 115(47):11071-11080. [52] Inoue A, Jiang L, Lu F, et al.Genomic imprinting of Xist by maternal H3K27me3[J]. Genes Dev, 2017, 31(19):1927-1932. [53] Gruneberg H.Gene action in the mammalian X-chromosome[J]. Genet Res, 1967, 9(3):343-357. [54] Nolen LD, Gao S, Han Z, et al.X chromosome reactivation and regulation in cloned embryos[J]. Dev Biol, 2005, 279(2):525-540. [55] Inoue K, Kohda T, Sugimoto M, et al.Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer[J]. Science, 2010, 330(6003):496-499. [56] Matoba S, Inoue K, Kohda T, et al.RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos[J]. Proc Natl Acad Sci USA, 2011, 108(51):20621-20626. [57] Zeng F, Huang Z, Yuan Y, et al.Effects of RNAi-mediated knockdown of Xist on the developmental efficiency of cloned male porcine embryos[J]. J Reprod Dev, 2016, 62(6):591-597. [58] Fukuda A, Tomikawa J, Miura T, et al.The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice[J]. Nat Commun, 2014 5:5464. [59] Shiels PG, Kind AJ, Campbell KH, et al.Analysis of telomere lengths in cloned sheep[J]. Nature, 1999, 399(6734):316-317. [60] Liu HJ, Peng H, Hu CC, et al.Effects of donor cells’ sex on nuclear transfer efficiency and telomere lengths of cloned goats[J]. Reprod Domest Anim, 2016, 51(5):789-794. [61] Burgstaller JP, Brem G.Aging of cloned animals:a mini-review[J]. Gerontology, 2017, 63(5):417-425. [62] Schoeftner S, Blasco MA.Chromatin regulation and non-coding RNAs at mammalian telomeres[J]. Semin Cell Dev Biol, 2010, 21(2):186-193. [63] Marion RM, Blasco MA.Telomere rejuvenation during nuclear reprogramming[J]. Curr Opin Genet Dev, 2010, 20(2):190-196. [64] Guo F, Li L, Li J, et al.Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J]. Cell Res, 2017, 27(8):967-988. [65] Kopp F, Mendell JT.Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407. [66] Wu FR, Liu Y, Wu QQ, et al.Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos[J]. BMC Genomics, 2018, 19(1):631-644. [67] Fu B, Ma H, Liu D.Endogenous retroviruses function as gene expression regulatory elements during mammalian pre-implantation embryo development[J]. Int J Mol Sci, 2019, 20(3):790-807. [68] Schiebinger G, Shu J, Tabaka M, et al.Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming[J]. Cell, 2019, 176(4):928-943. |
[1] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[2] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[3] | 徐以华, 黎起秦, 刘连盟, 王玲, 丁新华, 侯雨萱, 黄世文. 水稻/拟南芥防御病原细菌入侵的表观遗传调控研究进展[J]. 生物技术通报, 2018, 34(2): 87-95. |
[4] | 顾珊, 赵高平, 李喜和. 小分子化合物诱导细胞重编程研究进展[J]. 生物技术通报, 2018, 34(1): 79-83. |
[5] | 张宏燕, 信吉阁. 猪体细胞核移植技术研究进展[J]. 生物技术通报, 2016, 32(8): 41-46. |
[6] | 奥旭东,萨如拉,王杰,王会敏,于海泉. DNA甲基转移酶抑制剂5-Aza-CdR对AID基因修饰的牛胎儿成纤维细胞的作用[J]. 生物技术通报, 2016, 32(8): 103-112. |
[7] | 周桢宁. 体细胞直接重编程为神经元和神经干细胞[J]. 生物技术通报, 2015, 31(7): 26-32. |
[8] | 许锴,陈霞,高绍荣. 我国诱导多能干细胞研究进展[J]. 生物技术通报, 2015, 31(4): 72-81. |
[9] | 宋卫华, 刘坤, 赵同标. 诱导多能干细胞研究进展[J]. 生物技术通报, 2014, 0(5): 1-7. |
[10] | 沈心怡 ,宋坤, 杨利珊, 肖雄 ,张大鹏, 杨波 ,李跃民. 卵母细胞裂解液逆转化体细胞为多能干细胞的研究进展[J]. 生物技术通报, 2014, 0(12): 24-28. |
[11] | 李宏. 基因组稳定性与iPS细胞重编程的分子机制[J]. 生物技术通报, 2013, 0(12): 36-42. |
[12] | 侯士芳;黄家学;. 诱导多能干细胞技术的专利保护及价值分析[J]. , 2012, 0(09): 208-210. |
[13] | 李佳佳;马利兵;陈秀莉;籍凤宇;. 诱导性多能干细胞构建策略及其提高重编程效率的方法[J]. , 2012, 0(07): 41-48. |
[14] | 胡敏华;郭欣政;张守全;. 诱导多能干细胞最新进展[J]. , 2010, 0(10): 15-19. |
[15] | . 再生医学——理论与技术[J]. , 2010, 0(07): 171-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||