[1] Arnold BF, Wade TJ, Benjamin-Chung J, et al.Acute gastroenteritis and recreational water:highest burden among young US children[J]. Am J Public Health, 2016, 106(9):1690-1697. [2] Oun A, Kumar A, Harrigan T, et al.Effects of biosolids and manure application on microbial water quality in rural areas in the US[J]. Water, 2014, 6(12):3701-3723. [3] Tremblay LA, Gadd JB, Northcott GL.Steroid estrogens and estrogenic activity are ubiquitous in dairy farm watersheds regardless of effluent management practices[J]. Agr Ecosyst Environ, 2018, 253:48-54. [4] Nguyen KH, Senay C, Young S, et al.Determination of wild animal sources of fecal indicator bacteria by microbial source tracking(MST)influences regulatory decisions[J]. Water Res, 2018, 144:424-434. [5] Sun H, He X, Ye L, et al.Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River[J]. Appl Microbiol Biotechnol, 2017, 101(5):2143-2152. [6] Byappanahalli MN, Nevers MB, Korajkic A, et al.Enterococci in the environment[J]. Microbiol Molecular Biol Rev, 2012, 76(4):685-706. [7] Parveen S, Murphree RL, Edmiston L, et al.Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay[J]. Appl Environ Microbiol, 1997, 63(7):2607-2612. [8] Roslev P, Bukh AS.State of the art molecular markers for fecal pollution source tracking in water[J]. Appl Microbiol Biotechnol, 2011, 89(5):1341-1355. [9] Converse RR, Blackwood AD, Kirs M, et al.Rapid qPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters[J]. Water Res, 2009, 43(19):4828-4837. [10] Solecki O, Jeanneau L, Jarde E, et al.Persistence of microbial and chemical pig manure markers as compared to faecal indicator bacteria survival in freshwater and seawater microcosms[J]. Water Res, 2011, 45(15):4623-4633. [11] USEPA. Using microbial source tracking to support TMDL development and implementation[R]. Seattle, Washington State:USEPA, 2011. [12] Hagedorn C, Blanch AR, Harwood VJ.Microbial source tracking:methods, applications, and case studies[M]. New York:Springer, 2011. [13] Scott TM, Rose JB, Jenkins TM, et al.Microbial source tracking:current methodology and future directions[J]. Appl Environ Microbiol, 2002, 68(12):5796-5803. [14] Nshimyimana JP, Cruz MC, Thompson RJ, et al.Bacteroidales markers for microbial source tracking in Southeast Asia[J]. Water Res, 2017, 118:239-248. [15] Geldreich EE.Fecal coliform and fecal streptococcus density relationships in waste discharges and receiving waters[J]. Crit Rev Env Sci Technol, 1976, 6(4):349-369. [16] Geldreich EE, Kenner BA.Concepts of fecal streptococci in stream pollution[J]. Journal Water Pollution Control Federation, 1969, 41(8P2):R336-R352. [17] Edwards DR, Coyne MS, Vendrell PF, et al.Fecal coliform and streptococcus concentrations in runoff from grazed pastures in Northwest Arkansas[J]. J Am Water Resour Ass, 1997, 33(2):413-422. [18] Sinton LW, Finlay RK, Hannah DJ.Distinguishing human from animal faecal contamination in water:a review[J]. N Zealand J Marine Freshwater Res, 1998, 32(2):323-348. [19] Jang J, Hur HG, Sadowsky MJ, et al.Environmental Escherichia coli:ecology and public health implications—a review[J]. J Appl Microbiol, 2017, 123(3):570-581. [20] King EL, Bachoon DS, Gates KW.Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis[J]. J Microbiol Methods, 2007, 68(1):76-81. [21] Cimenti M, Hubberstey A, Bewtra JK, et al.Alternative methods in tracking sources of microbial contamination in waters[J]. Water Sa, 2007, 33(2):183-194. [22] Long SC, Shafer E, Arango FC, et al.Evaluation of three source tracking indicator organisms for watershed management[J]. J Water Supply:Res Technol-Aqua, 2003, 52(8):565-575. [23] Bonjoch X, Lucena F, Blanch AR.The persistence of Bifidobacteria populations in a river measured by molecular and culture techniques[J]. J Appl Microbiol, 2009, 107(4):1178-1185. [24] Venegas C, Diez H, Blanch AR, et al.Microbial source markers assessment in the Bogota River basin(Colombia)[J]. J Water Health, 2015, 13(3):801-810. [25] Balleste E, Blanch AR.Bifidobacterial diversity and the development of new microbial source tracking indicators[J]. Appl Environ Microbiol, 2011, 77(10):3518-3525. [26] Gourmelon M, Caprais MP, Mieszkin S, et al.Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[J]. Water Res, 2010, 44(16):4812-4824. [27] Gomez-Donate M, Balleste E, Muniesa M, et al.New molecular qu-antitative PCR assay for detection of host-specific Bifidobacteriaceae suitable for microbial source tracking[J]. Appl Environ Microb, 2012, 78(16):5788-5795. [28] 敖静, 阮晓红, 万宇. 水环境中粪便污染的微生物溯源技术及研究进展[J]. 环境与健康杂志, 2012, 29(7):658-662. [29] Harwood VJ, Whitlock J, Withington V.Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis:use in predicting the source of fecal contamination in subtropical waters[J]. Appl Environ Microbiol, 2000, 66(9):3698-3704. [30] Parveen S, Hodge NC, Stall RE, et al.Phenotypic and genotypic characterization of human and nonhuman Escherichia coli[J]. Water Res, 2001, 35(2):379-386. [31] D’Elia TV, Cooper CR, Johnston CG. Source tracking of Escherichia coli by 16S-23S intergenic spacer region denaturing gradient gel electrophoresis(DGGE)of the rrnB ribosomal operon[J]. Can J Microbiol, 2007, 53(10):1174-1184. [32] Deng D, Zhang N, Xu D, et al.Polymorphism of the glucosyltransferase gene(ycjM)in Escherichia coli and its use for tracking human fecal pollution in water[J]. Sci Total Environ, 2015, 537:260-267. [33] Khatib LA, Tsai YL, Olson BH.A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli[J]. Appl Microbiol Biotechnol, 2003, 63(2):231-238. [34] 郭萍, 李红娜, 李峰. MST与水环境生物源污染定量化溯源[J]. 农业环境科学学报, 2016, 35(2):205-211. [35] Leknoi Y, Mongkolsuk S, Sirikanchana K.Assessment of swine-specific bacteriophages of Bacteroides fragilis in swine farms with different antibiotic practices[J]. J Water Health, 2017, 15(2):251-261. [36] Bernhard AE, Field KG.A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA[J]. Appl Environ Microbiol, 2000, 66(10):4571-4574. [37] Mieszkin S, Yala JF, Joubrel R, et al.Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR[J]. J Appl Microbiol, 2010, 108(3):974-984. [38] Kildare BJ, Leutenegger CM, McSwain BS, et al. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales:a Bayesian approach[J]. Water Res, 2007, 41(16):3701-3715. [39] Reischer GH, Kasper DC, Steinborn R, et al.A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area[J]. Lett Appl Microbiol, 2007, 44(4):351-356. [40] Reischer GH, Kasper DC, Steinborn R, et al.Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in alpine karstic regions[J]. Appl Environ Microbiol, 2006, 72(8):5610-5614. [41] Shanks OC, Atikovic E, Blackwood AD, et al.Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution[J]. Appl Environ Microbiol, 2008, 74(3):745-752. [42] Mieszkin S, Furet J-P, Corthier G, et al.Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers[J]. Appl Environ Microbiol, 2009, 75(10):3045-3054. [43] 张杨, 吴仁人, 张一敏, 等. 珠三角河网地区粪便污染源解析[J]. 中国环境科学, 2017, 37(9):3446-3454. [44] 王显贵, 郭萍, 田云龙, 等. 利用qPCR定量检测水体中猪源拟杆菌特异性生物标记的研究[J]. 农业环境科学学报, 2013, 32(11):2302-2308. [45] Weidhaas JL, Macbeth TW, Olsen RL, et al.Identification of a Brevibacterium marker gene specific to poultry litter and development of a quantitative PCR assay[J]. J Appl Microbiol, 2010, 109(1):334-347. [46] Green HC, Dick LK, Gilpin B, et al.Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water[J]. Appl Environ Microbiol, 2012, 78(2):503-510. [47] Ryu H, Lu J, Vogel J, et al.Development and evaluation of a quantitative PCR assay targeting sandhill crane(Grus canadensis)fecal pollution[J]. Appl Environ Microbiol, 2012, 78(12):4338-4345. [48] Wicki M, Auckenthaler A, Felleisen R, et al.Assessment of source tracking methods for application in spring water[J]. J Water Health, 2015, 13(2):473-488. [49] Jagals P, Grabow WOK, Devilliers JC.Evaluation of indicators for assessment of human and animal fecal pollution of surface run-off[J]. Water Sci Technol, 1995, 31(5-6):235-241. [50] Lee JE, Lee H, Cho YH, et al.F+ RNA coliphage-based microbial source tracking in water resources of South Korea[J]. Sci Total Environ, 2011, 412:127-131. [51] Ogorzaly L, Gantzer C.Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups:Application to urban raw wastewater[J]. J Virol Methods, 2006, 138(1-2):131-139. [52] Vergara GGRV, Goh SG, Rezaeinejad S, et al.Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment[J]. Water Res, 2015, 79:39-47. [53] McQuaig SM, Scott TM, Lukasik JO, et al. Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples[J]. Appl Environ Microbiol, 2009, 75(11):3379-3388. [54] Zhang T, Breitbart M, Lee WH, et al.RNA viral community in human feces:prevalence of plant pathogenic viruses[J]. PLoS Biol, 2006, 4(1):108-118. [55] Karakach TK, Flight RM, Douglas SE, et al.An introduction to DNA microarrays for gene expression analysis[J]. Chemometr Intell Lab, 2010, 104(1):28-52. [56] Li X, Harwood VJ, Nayak B, et al.A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems[J]. Environ Sci Technol, 2015, 49(12):7319-7329. [57] Dubinsky EA, Esmaili L, Hulls JR, et al.Application of phylogenetic microarray analysis to discriminate sources of fecal pollution[J]. Environ Sci Technol, 2012, 46(8):4340-4347. [58] Li X, Harwood V, Nayak B, et al. A customized DNA microarray for microbial source tracking in environmental systems[EB/OL].2016[2018-09-15]. [59] Tan B, Ng C, Nshimyimana JP, et al.Next-generation sequencing(NGS)for assessment of microbial water quality:current progress, challenges, and future opportunities[J]. Frontiers Microbiol, 2015, 6:1-20. [60] Unno T, Staley C, Brown CM, et al.Fecal pollution:new trends and challenges in microbial source tracking using next-generation sequencing[J]. Environ Microbiol, 2018, 20(9):3132-3140. [61] Brown CM, Staley C, Wang P, et al.A high-throughput DNA-sequencing approach for determining sources of fecal bacteria in a Lake Superior estuary[J]. Environ Sci Technol, 2017, 51(15):8263-8271. [62] Devane ML, Weaver L, Singh SK, et al.Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds—A review[J]. J Environ Manage, 2018, 222:293-303. [63] Malla B, Shrestha RG, Tandukar S, et al.Validation of host-specific Bacteroidales quantitative PCR assays and their application to microbial source tracking of drinking water sources in the Kathmandu Valley, Nepal[J]. J Appl Microbiol, 2018, 125(2):609-619. [64] Odagiri M, Schriewer A, Hanley K, et al.Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India[J]. Sci Total Environ, 2015, 502:462-470. [65] 杨龙, 王晓燕, 孟庆义. 美国TMDL计划的研究现状及其发展趋势[J]. 环境科学与技术, 2008, 31(9):72-76. [66] 魏源送, 郑嘉熹, 王光宇, 等. 地表水微生物溯源技术的开发和应用进展[J]. 水资源保护, 2016, 32(1):1-11. [67] Layton BA, Cao Y, Ebentier DL, et al.Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study[J]. Water Res, 2013, 47(18):6897-6908. [68] Shanks OC, White K, Kelty CA, et al.Performance assessment PCR-based assays targeting Bacteroidales genetic markers of bovine fecal pollution[J]. Appl Environ Microbiol, 2010, 76(5):1359-1366. [69] Dick LK, Stelzer EA, Bertke EE, et al.Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms[J]. Appl Environ Microbiol, 2010, 76(10):3255-3262. [70] Green HC, Shanks OC, Sivaganesan M, et al.Differential decay of human faecal Bacteroides in marine and freshwater[J]. Environ Microbiol, 2011, 13(12):3235-3249. [71] Haugland RA, Siefring SC, Wymer LJ, et al.Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis[J]. Water Res, 2005, 39(4):559-568. [72] Siefring S, Varma M, Atikovic E, et al.Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems[J]. J Water Health, 2008, 6(2):225-237. |